

JavaScript for Data Science

Chapman & Hall/CRC Data Science Series

About the Series

Reflecting the interdisciplinary nature of the field, this new book series brings together
researchers, practitioners, and instructors from statistics, computer science, machine learn-
ing, and analytics. The series will publish cutting-edge research, industry applications, and
textbooks in data science.

Features:

• Presents the latest research and applications in the field, including new statistical and com-
putational techniques

• Covers a broad range of interdisciplinary topics
• Provides guidance on the use of software for data science, including R, Python, and Julia
• Includes both introductory and advanced material for students and professionals
• Presents concepts while assuming minimal theoretical background

The scope of the series is broad, including titles in machine learning, pattern recognition,
predictive analytics, business analytics, visualization, programming, software, learning analyt-
ics, data collection and wrangling, interactive graphics, reproducible research, and more. The
inclusion of examples, applications, and code implementation is essential.

JavaScript for Data Science
Maya Gans, Toby Hodges, Greg Wilson

Basketball Data Science: With Applications in R
Paola Zuccolotto, Marica Manisera

Cybersecurity Analytics
Rakesh M. Verma, David J. Marchette

Introduction to Data Science: Data Analysis and Prediction Algorithms with R
Rafael A. Irizarry

Feature Engineering and Selection: A Practical Approach for Predictive Models
Max Kuhn, Kjell Johnson

Probability and Statistics for Data Science: Math + R + Data
Norman Matloff

JavaScript for Data Science

Maya Gans
Toby Hodges
Greg Wilson

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2020 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-0-367-42248-6 (Paperback)
International Standard Book Number-13: 978-0-367-42652-1 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reason-
able efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know
so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organiza-
tion that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.crcpress.com
http://www.taylorandfrancis.com
http://www.copyright.com
http://www.copyright.com
http://www.copyright.com

Dedication

For Jordan

who taught me failures pave the way to success.

— Maya

For Oskar.

— Toby

For Kara, Claudia, Erin, Gabriela, Hannah, Laura, and Julia.
— Greg

All royalties from the sale of this book are being donated to R-Ladies,

a worldwide organization whose mission is

to promote gender diversity in the R community.

http://taylorandfrancis.com

Contents

Chapter 1 Introduction ...1

1.1 Who You Are ..1

1.2 Who We Are ...2

1.3 Setting Up ...3

1.4 Contributing ..3

1.4.1 Acknowledgments..4

1.5 Exercises ...4

Chapter 2 Basic Features..5

2.1 Hello, World..5

2.2 Basic Data Types ..5

2.3 Control Flow...7

2.4 Formatting Strings ..8

2.5 Objects ..8

2.6 Functions...10

2.7 Modules ..12

2.8 Exercises ...13

Chapter 3 Callbacks ...19

3.1 The Call Stack...19

3.2 Functions of Functions ...20

3.3 Anonymous Functions ..24

3.4 Functional Programming ..25

3.5 Closures ..27

3.6 Exercises ...30

Chapter 4 Objects and Classes ...33

4.1 Doing It By Hand..33

4.2 Classes ..34

4.3 Inheritance ..36

4.4 Exercises ...38

Chapter 5 HTML and CSS...43

5.1 Formatting...43

5.2 Text ...43

5.3 Pages ...44

5.4 Attributes ..45

vii

viii Contents

5.5 Lists...46

5.6 Tables ..47

5.7 Links ...47

5.8 Images...48

5.9 Cascading Style Sheets ...49

5.10 Bootstrap...51

5.11 Exercises ...53

Chapter 6 Manipulating Pages ...55

6.1 Counting Paragraphs...55

6.2 Creating a Table of Contents ..57

6.3 Sortable Lists ..59

6.4 Bibliographic Citations...62

6.5 A Real-time Clock ..66

6.6 Exercises ...67

Chapter 7 Dynamic Pages ..69

7.1 Hello, World..69

7.2 JSX..71

7.3 Creating Components ...72

7.4 Developing with Parcel...73

7.5 Multiple Files..75

7.6 Exercises ...77

Chapter 8 Visualizing Data ..79

8.1 Vega-Lite...79

8.2 Local Installation ..83

8.3 Exercises ...84

Chapter 9 Promises ..87

9.1 The Execution Queue ...87

9.2 Promises..90

9.3 Using Promises ...94

9.4 async and await..97

9.5 Exercises ...98

Chapter 10 Interactive Sites ...103

10.1 But It Doesn’t Work..104

10.2 Models and Views...107

10.3 Fetching Data..110

10.4 Exercises ...115

ix Contents

Chapter 11 Managing Data ..117

11.1 Data Formats...117

11.2 Slicing Data ..118

11.3 Data Manager..119

11.4 Exercises ...122

Chapter 12 Creating a Server ...125

12.1 HTTP ..125

12.2 Hello, Express...127

12.3 Handling Multiple Paths ...128

12.4 Serving Files from Disk..129

12.5 Content Types ...131

12.6 Exercises ...132

Chapter 13 Testing ...133

13.1 Introducing Mocha..133

13.2 Refactoring ...134

13.3 Testing the Server ...135

13.4 Checking the HTML...138

13.5 Exercises ...139

Chapter 14 Using Data-Forge ..141

14.1 Basic Operations...142

14.2 Doing Calculations ...144

14.3 Subsets ..148

14.4 Aggregation ..150

14.5 In Real Life ...152

14.6 Exercises ...155

Chapter 15 Capstone Project ..157

15.1 Data Manager..157

15.2 Server ..160

15.3 API..161

15.4 The Display...162

15.5 The Tables...165

15.6 The Chart ..167

15.7 Running It ...168

15.8 Exercises ...171

Chapter 16 Finale ...173

Bibliography ...175

x Contents

Appendix A License...177

Appendix B Code of Conduct..179

B.1 Our Standards ...179

B.2 Our Responsibilities..179

B.3 Scope...180

B.4 Enforcement..180

B.5 Attribution...180

Appendix C Contributing...181

Appendix D Glossary...183

Appendix E Key Points..193

Appendix F Collaborating ...199

F.1 Licensing Software ...199

F.2 Licensing Data and Documentation....................................200

F.3 Code of Conduct ...201

F.4 Governance ...202

Appendix G Legacy JavaScript Issues ...205

G.1 Equality...205

G.2 Iteration...206

G.3 Prototypes ...207

Appendix H Regular Expressions ..209

Appendix I Logging..211

Appendix J Extensible Servers ...213

Appendix K Using a Database ...215

K.1 Starting Point ..215

K.2 In-Memory Database ..217

K.3 Making It Testable ..220

K.4 Testing...222

K.5 Updating the Database..223

K.6 Exercises ...225

xi Contents

Appendix L Deploying ..227

Index..229

http://taylorandfrancis.com

1 Introduction

David Beazley1 thought that “JavaScript versus Data Science” would be a better title
for this book. While that one word sums up how many people view the language,
we hope we can convince you that modern JavaScript is usable as well as useful.
Scientists and engineers are who we were thinking of when we wrote this book but
we hope that these lessons will also help librarians, digital humanists, and everyone
else who uses computing in their research.

We will cover:

• Core features of modern JavaScript
• Programming with callbacks and promises
• Creating objects and classes
• Writing HTML and CSS
• Creating interactive pages with React
• Building data services
• Testing
• Data visualization
• Combining everything to create a three-tier web application

Unlike most introductions to JavaScript, these lessons present an even mix of
browser programming and server programming. We give each topic only shallow
coverage; if you want to know more, there are many other free tutorials you can dive
into once you’ve mastered the basics, some of which are both up-to-date and well
designed.

1.1 WHO YOU ARE

Every lesson should aim to meet the needs of specific learners2 [Wils2019]. The
three people described below define the intended audience for this one.

Bhadra received a BSc in microbiology five years ago, and has worked since then
for a biotech firm with labs in four countries. She did a statistics class using R as an
undergrad, then learned some more R and some Unix shell scripting in a Software
Carpentry3 workshop, but has no other training as a programmer. Bhadra’s team
is developing tools to detect structural similarities between proteins. They would
like to build a browser interface to their tools so that people can test different
algorithms on various datasets. This book will show Bhadra how to build, test,
and deploy that interface.

1https://www.dabeaz.com/
2http://teachtogether.tech/en/process/
3http://software-carpentry.org/

1

http://software-carpentry.org
http://teachtogether.tech
https://www.dabeaz.com

2	 JavaScript for Data Science

Efraim did fieldwork for the Ministry of Natural Resources for thirty-one years. He
learned Visual Basic so that he could write Excel macros, then mastered C in order
to maintain the control software for some second-hand remote sensing equipment.
Efraim recently retired, and is now an active member of several citizen science
projects. This book will show him how to create a service to share those projects’
data with the world, and how to build a web-based administrative interface for it.

Sumi is completing a PhD in 19th Century history. As part of her research, she is
transcribing and cataloging the records of several dozen Japanese-American mid­
wives. She has been creating and customizing WordPress sites for several years,
and has picked up bits and pieces of JavaScript while doing so. Sumi is about to
start looking for a job, and wants to create an interactive website to showcase her
research. This book will fill in some of the gaps in her knowledge and show her
how to take advantage of JavaScript’s more modern features.

These prototypical users:

•	 can write two-page programs that use lists, loops, conditionals, and functions,
•	 can run commands in the Unix shell to navigate the filesystem and create and

delete directories and files, and
•	 have reliable access to the Internet.

1.2 WHO WE ARE

Maya Gans is a freelance data scientist and front-end developer by way of quan­
titative biology. She has 4 years of experience programming in R, and her passion
for data visualization brought her to the weird world of JavaScript. When she isn’t
debugging or blogging4 about code, she’s somewhere remote climbing large moun­
tains. She dedicates this book to her fellow self-taught programmers who were told
they weren’t good enough but are too driven and excited to care.

Toby Hodges5 is a bioinformatician turned community coordinator, working on
the Bio-IT Project6 at EMBL7. He teaches a lot of courses in computing, organizes a
lot of community-building events, listens to a lot of punk rock, and occasionally still
finds time to write code and ride his bike. Toby would like to thank his wife for her
support and patience while he swore about how annoying JavaScript is to debug.

Greg Wilson8 has worked for 35 years in both industry and academia, and is the
author or editor of several books on computing and two for children. He co-founded
Software Carpentry9, a non-profit organization that teaches basic computing skills

4https://maya.rbind.io/
5https://tbyhdgs.info/
6https://bio-it.embl.de
7https://www.embl.de
8http://third-bit.com/
9http://carpentries.org

http://carpentries.org
http://third-bit.com
https://www.embl.de
https://bio-it.embl.de
https://tbyhdgs.info
https://maya.rbind.io

Introduction 3

to researchers, and is now part of the education team at RStudio10. Greg would like
to thank everyone at Rangle11 who was so patient with him when he was learning
JavaScript.

1.3 SETTING UP

You can find the examples for each chapter in the src directory in our GitHub repos­
itory12. Each sub-folder contains the code and data needed to follow along with the
text.

The exercises at the end of each chapter include new information that you will
need later in the book, and are therefore not optional. You can do the first few online,
using a service like RunKit13, which gives you an interactive JavaScript playground
in your browser. For larger things, and for chapters starting with the one on creating
dynamic web pages (Chapter 7), you should download and install14 the latest Long-
term Support (LTS) versions of Node and NPM.

Node is an open source implementation of JavaScript that includes a command-
line interpreter like those for languages such as Python and R. The command node
on its own starts a read-evaluate-print loop (REPL) that executes commands as they
are typed in and displays their output. The command node filename.js reads and
runs the commands in filename.js; we will see in Chapter 6 how to run JavaScript
in a browser.
npm is the Node Package Manager, a command-line tool for finding, installing,

updating, building, and executing JavaScript libraries. The command npm install
--global library-name (without a .js extension) installs a library globally so
that all projects can use it, while npm install --save library-name installs the
library locally (i.e., in the current project folder). Local installation is usually a better
idea, since it isolates projects from one another.

1.4 CONTRIBUTING

Contributions of all kinds are welcome, from errata and minor improvements to
entirely new sections and chapters: please submit an issue or pull request to our
GitHub repository15. Everyone whose work is incorporated will be acknowledged;
please note that all contributors are required to abide by our Code of Conduct (Ap­
pendix B). Please note that we use Simplified English rather than Traditional English,

10http://rstudio.com

11https://rangle.io/

12https://github.com/software-tools-in-javascript/js4ds

13https://runkit.com/

14https://nodejs.org/en/download/

15https://github.com/software-tools-in-javascript/js4ds/

https://github.com
https://nodejs.org
https://runkit.com
https://github.com
https://rangle.io
http://rstudio.com

4	 JavaScript for Data Science

i.e., American rather than British spelling and grammar. We encourage translations;
if you would like to take this on, please email us16.

If you wish to report errata or suggest improvements to wording, please include
the chapter name in the first line of the body of your report (e.g., Testing Data
Analysis).

1.4.1 ACKNOWLEDGMENTS

We are grateful as always to Shashi Kumar for help with the LaTeX. We are also
grateful for fixes from:

•	 Stephan Druskat17

•	 Chiranjeev Gupta18

•	 Eric Leung19

•	 Peter Munro20

•	 Leonardo Uieda21

1.5 EXERCISES

SETTING UP

Install Node22 on your computer, then run the commands node --version and npm
--version to see which versions you have.

KEY POINTS

•	 Modern JavaScript is a good tool for building desktop and web-based applica­
tions.

•	 This course is for people who know what loops and functions are, but have never
used JavaScript or built web applications.

•	 Node is a command-line interpreter for JavaScript, which can be used interac­
tively or to run scripts in files.

•	 NPM is the Node Package Manager, which can be used to find, install, update,
build, and execute JavaScript libraries.

16gvwilson@third-bit.com
17https://github.com/sdruskat
18https://github.com/cRAN-cg
19https://erictleung.com/
20https://github.com/pdm55
21http://www.leouieda.com/
22https://nodejs.org/en/download/

https://nodejs.org
https://github.com
https://erictleung.com
https://github.com
https://github.com
http://www.leouieda.com
mailto:gvwilson@third-bit.com

2 Basic Features

This lesson introduces the core features of JavaScript, including how to run pro­
grams, the language’s basic data types, arrays and objects, loops, conditionals, func­
tions, and modules. All of these concepts should be familiar if you have programmed
before.

2.1 HELLO, WORLD

Use your favorite text editor to put the following line in a file called hello.js:

console.log('hello, world')

console is a built-in module that provides basic printing services (among other
things). As in many languages, we use the dotted notation X.Y to get part Y of thing
X—in this case, to get console’s log function. Character strings like ’hello,
world’ can be written with either single quotes or double quotes, so long as the
quotation marks match, and semi-colons at the ends of statements are now (mostly)
optional.

To run a program, type node program_name.js at the command line. (We will
preface shell commands with $ to make them easier to spot.)

$ node src/basics/hello.js

hello, world

2.2 BASIC DATA TYPES

JavaScript has the usual datatypes, though unlike C, Python, and many other lan­
guages, there is no separate type for integers: it stores all numbers as 64-bit floating-
point values, which is accurate up to about 15 decimal digits. We can check this
using typeof, which returns a string. (Note: typeof is an operator, not a function:
we apply it to something by typing a space followed by the name of the thing we’d
like to check the type of, e.g., typeof dress as opposed to typeof(dress).) We
use it alongside const below, which itself is helpful when we want to give a name
to a constant value:

const aNumber = 123.45

console.log('the type of', aNumber, 'is', typeof aNumber)

the type of 123.45 is number

const anInteger = 123

console.log('the type of', anInteger, 'is', typeof anInteger)

5

6 JavaScript for Data Science

the type of 123 is number

We have already met strings, which may contain any Unicode character:

const aString = 'some text'

console.log('the type of', aString, 'is', typeof aString)

the type of some text is string

Functions are also a type of data, a fact whose implications we will explore in
Chapter 3:

console.log('the type of', console.log, 'is', typeof console.log)

the type of function () { [native code] } is function

Rather than showing the other basic types one by one, we will put three values in
a list and loop over it:

const otherValues = [true, undefined, null]
for (let value of otherValues) {
console.log('the type of', value, 'is', typeof value)

}

the type of true is boolean
the type of undefined is undefined
the type of null is object

As the example above shows, we create an array of values to loop through called
otherValues. We initiate our loop with the word for. Within the parentheses, let
creates a variable called value to iterate over each element within otherValues,
and value is the changing array value of otherValues. Finally, within the curly
braces we perform our desired operation on every value.

Note that we use let rather than the older var and of rather than in: the latter
returns the indexes of the collection (e.g., 0, 1, 2), which has some traps for the
unwary (Appendix G.2). Note also that indexing starts from 0 rather than 1, and that
indentation is optional and for readability purposes only. This may be different from
the language that you’re used to.

Constants versus Variables
You should make things constants unless they really need to be variables
because it’s easier for both people and computers to keep track of things
that are defined once and never change.

After all this, the types themselves are somewhat anticlimactic. JavaScript’s
boolean type can be either true or false, though we will see below that other
things can be treated as Booleans. undefined means “hasn’t been given a value”,
while null means “has a value, which is nothing”.

7 Basic Features

"northwest" "northeast"

"southwest" "southeast"

,

,

,
ou

te
r

inner

Figure 2.1: Nested Loop Traversal

2.3 CONTROL FLOW

We have already seen for loops and flat arrays, so let’s have a look at nested arrays
and conditionals. We start with arrays that contain other arrays, which are usually
processed by nested loops:

const nested = [['northwest', 'northeast'],
['southwest', 'southeast']]

for (let outer of nested) {
for (let inner of outer) {
console.log(inner)

}
}

northwest
northeast
southwest
southeast

The inner loop runs a complete cycle of iterations for each iteration of the outer
loop. Each value assigned to the variable outer is a pair, so each value assigned to
inner is one of the two strings from that pair (Figure 2.1).

A JavaScript program can also make choices: it executes the body of an if state­
ment if and only if the condition is true. Each if can have an else, whose body is
only executed if the condition isn’t true:

const values = [0, 1, '', 'text', undefined, null, [], [2, 3]]
for (let element of values) {
if (element) {
console.log(element, 'of type', typeof element, 'is truthy')

} else {
console.log(element, 'of type', typeof element, 'is falsy')

}
}

0 of type number is falsy
1 of type number is truthy

8 JavaScript for Data Science

of type string is falsy
text of type string is truthy
undefined of type undefined is falsy
null of type object is falsy
of type object is truthy
2,3 of type object is truthy

This example shows that arrays are heterogeneous, i.e., that they can contain val­
ues of many different types. It also shows that JavaScript has some rather odd ideas
about the nature of truth. 0 is falsy, while all other numbers are truthy; similarly, the
empty string is falsy and all other strings are truthy. undefined and null are both
falsy, as most programmers would expect.

But as the last two lines of output show, an empty array is truthy, which is dif­
ferent from its treatment in most programming languages. The argument made by
JavaScript’s advocates is that an empty array is there, it just happens to be empty,
but this behavior is still a common cause of bugs. When testing an array, check that
Array.length is zero. (Note that this is a property, not a method, i.e., it should be
treated as a variable, not called like a function.)

Safety Tip
Always use === (triple equals) and !== when testing for equality and in­
equality in JavaScript. == and != do type conversion, which can produce
some ugly surprises (Section G.1).

2.4 FORMATTING STRINGS

Rather than printing multiple strings and expressions, we can interpolate values
into a back-quoted string. (We have to use back quotes because this feature was
added to JavaScript long after the language was first created.) As the example below
shows, the value to be interpolated is put in ${...}, and can be any valid JavaScript
expression, including a function or method call.

for (let color of ['red', 'green', 'blue']) {
const message = �color is ${color}�
console.log(message, �and capitalized is ${color.toUpperCase()}�)

}

color is red and capitalized is RED
color is green and capitalized is GREEN
color is blue and capitalized is BLUE

This allows us to succinctly add variables to a string instead of:

const message = "color is" + color + "and capitalized is " + color.toUpperCase()

2.5 OBJECTS

An object in JavaScript is a collection of key-value pairs, and is equivalent in simple
cases to what Python would call a dictionary. It’s common to visualize an object as a

9 Basic Features

order

family

genus

species

key

"Primates"

"Callitrichidae"

"Callithrix"

"Jacchus"

value

Figure 2.2: Objects in Memory

two-column table with the keys in one column and the values in another (Figure 2.2).
The keys must be strings; the values can be anything. We can create an object by
putting key-value pairs in curly brackets; there must be a colon between the key and
the value, and pairs must be separated by commas like the elements of arrays:

const creature = {
'order': 'Primates',
'family': 'Callitrichidae',
'genus': 'Callithrix',
'species': 'Jacchus'

}

console.log(�creature is ${creature}�)
console.log(�creature.genus is ${creature.genus}�)
for (let key in creature) {
console.log(�creature[${key}] is ${creature[key]}�)

}

creature is [object Object]
creature.genus is Callithrix
creature[order] is Primates
creature[family] is Callitrichidae
creature[genus] is Callithrix
creature[species] is Jacchus

The type of an object is always object. We can get the value associated with a
key using object[key], but if the key has a simple name, we can use object.key
instead. Note that the square bracket form can be used with variables for keys, but the
dotted notation cannot: i.e., creature.genus is the same as creature[’genus’],
but the assignment g = ’genus’ followed by creature.g does not work.

Because string keys are so common, and because programmers use simple names
so often, JavaScript allows us to create objects without quoting the names of the
keys:

const creature = {
order: 'Primates',
family: 'Callitrichidae',

10 JavaScript for Data Science

genus: 'Callithrix',
species: 'Jacchus'

}

[object Object] is not particularly useful output when we want to see
what an object contains. To get a more helpful string representation, use
JSON.stringify(object):

console.log(JSON.stringify(creature))

{"order":"Primates","family":"Callitrichidae",
"genus":"Callithrix","species":"Jacchus"}

Here, “JSON” stands for “JavaScript Object Notation”; we will learn more about it
in Chapter 11.

2.6 FUNCTIONS

Functions make it possible for mere mortals to understand programs by allowing us
to think about them one piece at a time. Here is a function that finds the lowest and
highest values in an array:

function limits (values) {
if (!values.length) {
return [undefined, undefined]

}
let low = values[0]
let high = values[0]
for (let v of values) {
if (v < low) low = v
if (v > high) high = v

}
return [low, high]

}

Its definition consists of the keyword function, its name, a parenthesized list of
parameters (which might be empty), and its body.

The body of the function begins with a test of the thing, referred to inside
the function as values, provided as an argument to the function. If values
has no length—i.e., it does not consist of multiple entries—the function returns
[undefined,undefined]. (We will address the rationale behind this behavior in
the exercises.)

if (!values.length) {

return [undefined, undefined]

}

If that initial check finds that values does have a length—i.e., !values.length
returns false—the rest of the function is run. This involves first initializing two
variables, low and high, with their values set as equal to the first item in values.

11 Basic Features

let low = values[0]
let high = values[0]

In the next stage of the function, all of the values are iterated over and low and
high are assigned a new value, equal to that of the next item, if that value is lower
than low or higher than high respectively.

for (let v of values) {
if (v < low) low = v
if (v > high) high = v

}

Once all of the items in values have been examined, the values of low and high
are the minimum and maximum of values. These are returned as a pair inside an
array.

return [low, high]

Note that we can use return to explicitly return a value at any time; if nothing is
returned, the function’s result is undefined.

One oddity of JavaScript is that almost anything can be compared to almost any­
thing else. Here are a few tests that demonstrate this:

const allTests = [
[],
[9],
[3, 30, 300],
['apple', 'Grapefruit', 'banana'],
[3, 'apple', ['sub-array']]

]
for (let test of allTests) {
console.log(�limits of ${test} are ${limits(test)}�)

}

limits of are ,
limits of 9 are 9,9
limits of 3,30,300 are 3,300
limits of apple,Grapefruit,banana are Grapefruit,banana
limits of 3,apple,sub-array are 3,3

Programmers generally don’t write functions this way any longer, since it interacts
in odd ways with other features of the language; Section G.3 explains why and how
in more detail. Instead, most programmers now write fat arrow functions consisting
of a parameter list, the => symbol, and a body. Fat arrow functions don’t have names,
so the function must be assigned that to a constant or variable for later use:

const limits = (values) => {
if (!values.length) {
return [undefined, undefined]

}

12 JavaScript for Data Science

let low = values[0]

let high = values[0]

for (let v of values) {

if (v < low) low = v
if (v > high) high = v

}

return [low, high]

}

No matter how functions are defined, each one is a scope, which means its pa­
rameters and any variables created inside it are local to the function. We will discuss
scope in more detail in Chapter 3.

Stuck in the Past
Why did JavaScript introduce another syntax rather than fixing the behav­
ior of those defined with function? The twin answers are that changes
would break legacy programs that rely on the old behavior, and that the
language’s developers wanted to make it really easy to define little func­
tions. Here and elsewhere, we will see how a language’s history and use
shape its evolution.

2.7 MODULES

As our programs grow larger, we will want to put code in multiple files. The un­
avoidable bad news is that JavaScript has several module systems: Node still uses
one called CommonJS, but is converting to the modern standard called ES6, so what
we use on the command line is different from what we use in the browser (for now).

Ee Ess
JavaScript’s official name is ECMAScript, though only people who use the
word “datum” in everyday conversation ever call it that. Successive ver­
sions of the language are therefore known as ES5, ES6, and so on, except
when they’re referred to as (for example) ES2018.

Since we’re going to build command-line programs before doing anything in the
browser, we will introduce Node’s module system first (Figure 2.3). We start by
putting this code in a file called utilities.js:

DEFAULT_BOUND = 3

const clip = (values, bound = DEFAULT_BOUND) => {
let result = []
for (let v of values) {
if (v <= bound) {

result.push(v)

}

}

return result

}

13 Basic Features

utilities.js application.js

module.exports = {
 clip: clip
}

key value

clip ...function...

const utilities =

creates

becomes

require('./utilities')

Figure 2.3: How Require Works

module.exports = {
clip: clip

}

The function definition is straightforward; as you may have guessed, bound =
DEFAULT_BOUND sets a default value for that parameter so that clip can be called
with just an array. You may also have guessed that Array.push appends a value to
the end of an array; if you didn’t, well, now you know.

What’s more important is assigning an object to module.exports. Only those
things named in this object are visible to the outside world, so DEFAULT_BOUND
won’t be. Remember, keys that are simple names don’t have to be quoted, so clip:
clip means “associate a reference to the function clip with the string key "clip".

To use our newly-defined module we must require it. For example, we can put
this in application.js:

const utilities = require('./utilities')

const data = [-1, 5, 3, 0, 10]

console.log(�clip(${data}) -> ${utilities.clip(data)}�)

console.log(�clip(${data}, 5) -> ${utilities.clip(data, 5)}�)

clip(-1,5,3,0,10) -> -1,3,0

clip(-1,5,3,0,10, 5) -> -1,5,3,0

require returns the object that was assigned to module.exports, so if we have
assigned its result to a variable called utilities, we must then call our function
as utilities.clip. We use a relative path starting with ./ or ../ to import local
files; paths that start with names are taken from installed Node libraries.

2.8 EXERCISES

TYPEOF

What kind of thing is typeof? Is it an expression? A function? Something else?
(You might notice that typeof typeof is syntactically invalid. In such circum­

14 JavaScript for Data Science

stances, an Internet search engine is your friend, as is the Mozilla Developer Net­
work1 JavaScript reference.

FILL IN THE BLANKS

Answer these questions about the program below:

1. What does Array.push do?
2. How does a while loop work?
3. What does += do?
4. What does Array.reverse do, and what does it return?

let current = 0
let table = []
while (current < 5) {
const entry = �square of ${current} is ${current * current}�

table.push(entry)

current += 1

}

table.reverse()

for (let line of table) {

console.log(line)

}

square of 4 is 16
square of 3 is 9
square of 2 is 4
square of 1 is 1
square of 0 is 0

WHAT IS TRUTH?

Write a function called isTruthy that returns true for everything that JavaScript
considers truthy, and false for everything it considers falsy except empty arrays:
isTruthy should return false for those.

THE SHAPE OF THINGS TO COME

We wrote the example function, limits, above to return [undefined,undefined]
if a variable with no length is fed into it. What is the advantage of doing this as
opposed to returning undefined only?

COMBINING DIFFERENT TYPES

What does NaN represent? What output would you expect from the code below?
Try running it and see whether the results match your expectations. What are the
implications of this behavior when working with real-world data?

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

https://developer.mozilla.org

15 Basic Features

const first = [3, 7, 8, 9, 1]

console.log(�aggregating ${first}�)

let total = 0

for (let d of first) {

total += d

}
console.log(total)

const second = [0, 3, -1, NaN, 8]

console.log(�aggregating ${second}�)

total = 0

for (let d of second) {

total += d

}
console.log(total)

WHAT DOES THIS DO?

Explain what is happening in the assignment statement that creates the constant
creature.

const genus = 'Callithrix'
const species = 'Jacchus'
const creature = {genus, species}
console.log(creature)

{ genus: 'Callithrix', species: 'Jacchus' }

DESTRUCTURING ASSIGNMENT

When this short program runs:

const creature = {
genus: 'Callithrix',
species: 'Jacchus'

}

const {genus, species} = creature

console.log(�genus is ${genus}�)

console.log(�species is ${species}�)

it produces the output:

genus is Callithrix
species is Jacchus

but when this program runs:

const creature = {
first: 'Callithrix',
second: 'Jacchus'

}

const {genus, species} = creature

console.log(�genus is ${genus}�)

console.log(�species is ${species}�)

16	 JavaScript for Data Science

it produces:

genus is undefined
species is undefined

1. What is the difference between these two programs?
2. How does destructuring assignment work in general?
3. How	 can we use this technique to rewrite the require statement in
src/basics/import.js so that clip can be called directly as clip(...)
rather than as utilities.clip(...)?

RETURN TO ME, FOR MY HEART WANTS YOU ONLY

What output would you see in the console if you ran this code?

const verbose_sum = (first, second) => {
console.log(�Going to add ${first} to ${second}�)
let total = first + second
return total
console.log(�Finished summing�)

}

var result = verbose_sum(3, 6)
console.log(result)

1.	 Going to add ${first} to ${second}
9

2.	 Going to add 3 to 6
9
Finished summing

3.	 Going to add 3 to 6
9

4.	 Going to add 3 to 6
36

KEY POINTS

•	 Use console.log to print messages.
•	 Use dotted notation X.Y to get part Y of object X.
•	 Basic data types are Booleans, numbers, and character strings.
•	 Arrays store multiple values in order.
•	 The special values null and undefined mean ‘no value’ and ‘does not exist’.
•	 Define constants with const and variables with let.
•	 typeof returns the type of a value.
•	 for (let variable of collection) {...} iterates through the values in

an array.
•	 if (condition) {...} else {...} conditionally executes some code.

17 Basic Features

•	 false, 0, the empty string, null, and undefined are false; everything else is
true.

•	 Use back quotes and ${...} to interpolate values into strings.
• An object is a collection of name/value pairs written in {...}.
• object[key] or object.key gets a value from an object.
•	 Functions are objects that can be assigned to variables, stored in lists, etc.
•	 function name(...parameters...) {...body...} is the old way to define

a function.
•	 name = (...parameters...) => {...body...} is the new way to define a

function.
•	 Use return inside a function body to return a value at any point.
•	 Use modules to divide code between multiple files for re-use.
•	 Assign to module.exports to specify what a module exports.
•	 require(...path...) imports a module.
•	 Paths beginning with ‘.’ or ‘/’ are imported locally, but paths without ‘.’ or ‘/’ look

in the library.

http://taylorandfrancis.com

3 Callbacks

JavaScript relies heavily on callback functions: Instead of a function giving us a re­
sult immediately, we give it another function that tells it what to do next. Many other
languages use them as well, but JavaScript is often the first place that programmers
with data science backgrounds encounter them. In order to understand how they work
and how to use them, we must first understand what actually happens when functions
are defined and called.

3.1 THE CALL STACK

When JavaScript parses the expression let name = "text", it allocates a block
of memory big enough for four characters and stores a reference to that block of
characters in the variable name. We can show this by drawing a memory diagram
like the one in Figure 3.1.

name "text"

Variables Values

Figure 3.1: Name and Value

When we write:

oneMore = (x) => {
return x + 1

}

JavaScript allocates a block of memory big enough to store several instructions,
translates the text of the function into instructions, and stores a reference to those
instructions in the variable oneMore (Figure 3.2).

The only difference between these two cases is what’s on the other end of the
reference: four characters or a bunch of instructions that add one to a number. This
means that we can assign the function to another variable, just as we would assign a
number:

// assign the function oneMore to the variable anotherName
const anotherName = oneMore

// instead of calling the function oneMore we can call the function anotherName
console.log(anotherName(5))

19

20 JavaScript for Data Science

6

name "text"

Variables Values

oneMore ...instructions...

Figure 3.2: Functions in Memory

Doing this does not call the function: as Figure 3.3 shows, it creates a second
name, or alias, that refers to the same block of instructions.

As explained in Chapter 2, when JavaScript calls a function it assigns the ar­
guments in the call to the function’s parameters. In order for this to be safe, we
need to ensure that there are no name collisions, i.e., that if there is a variable called
something and one of the function’s parameters is also called something, the func­
tion will use the right one. The way every modern language implements this is to use
a call stack. Instead of putting all our variables in one big table, we have one table
for global variables and one extra table for each function call. This means that if we
assign 100 to x, call oneMore(2 * x + 1), and look at memory in the middle of
that call, we will see what’s in Figure 3.4.

name "text"

Variables Values

oneMore ...instructions...

anotherName

Figure 3.3: Aliasing a Function

3.2 FUNCTIONS OF FUNCTIONS

The call stack allows us to write and call functions without worrying about whether
we’re accidentally going to refer to the wrong variable. And since functions are just
another kind of data, we can pass one function into another. For example, we can
write a function called doTwice that calls some other function two times:

const doTwice = (action) => {
action()

Callbacks 21

x 100

Variables Values

oneMore ...instructions...

x 201

gl
ob

al
on

eM
or

e

Figure 3.4: The Call Stack

action()
}

const hello = () => {
console.log('hello')

}

doTwice(hello)

hello
hello

Again, this is clearer when we look at the state of memory while doTwice is running
(Figure 3.5).

doTwice

Variables Values

hello ...instructions...

action

gl
ob

al
do

Tw
ic

e

...instructions...

Figure 3.5: Functions of Functions

This becomes more useful when the function or functions passed in have parame­
ters of their own. For example, the function pipeline passes a value to one function,
then takes that function’s result and passes it to a second, and returns the final result:

const pipeline = (initial, first, second) => {
return second(first(initial))

}

22 JavaScript for Data Science

Let’s use this to combine a function that trims blanks off the starts and ends of
strings and another function that uses a regular expression (Appendix H) to replace
spaces with dots:

const trim = (text) => { return text.trim() }

const dot = (text) => { return text.replace(/ /g, '.') }

const original = ' this example uses text '

const trimThenDot = pipeline(original, trim, dot)
console.log(�trim then dot: |${trimThenDot}|�)

trim then dot: |this.example.uses.text|

During the call to temp = first(initial), but before a value has been re­
turned to be assigned to temp, memory looks like Figure 3.6. Reversing the order of
the functions changes the result:

trim

Variables Values

dot ...instructions...

initial

gl
ob

al
pi

pe
lin

e

...instructions...

pipeline ...instructions...

original " this example uses text "

first

second

texttr
im

temp

Figure 3.6: Implementing a Pipeline

const dotThenTrim = pipeline(original, dot, trim)
console.log(�dot then trim: |${dotThenTrim}|�)

dot then trim: |..this.example.uses.text..|

We can make a more general pipeline by passing an array of functions:

Callbacks	 23

const pipeline = (initial, operations) => {
let current = initial
for (let op of operations) {
current = op(current)

}

return current

}

Going through this line by line:

•	 The function pipeline takes an initial input value and array of functions. Each of
those functions must take one value as an input and produce one value as output.

•	 We initialize a variable called current to hold the current value. We have to use
let for this rather than const because we want to update it after each step of the
pipeline runs.

•	 We then call each of the functions in the pipeline in turn, passing in the current
value and storing the result to be passed into the next function.

•	 The final result is whatever came out of the last step in the pipeline.

We don’t actually have to create a separate variable for the current value; since
parameters are always variables rather than constants, we could just overwrite the
parameter initial over and over again like this:

const pipeline = (current, operations) => {
for (let op of operations) {
current = op(current)

}

return current

}

Let’s add a function double to our suite of text manglers:

const double = (text) => { return text + text }

and then try it out:

const original = ' some text '

const final = pipeline(original, [double, trim, dot])

console.log(�|${original}| -> |${final}|�)

| some text | -> |some.text..some.text|

The order of operations is:

1. current is assigned ’ some text ’ (with spaces around each word).
2. It is then assigned double(’ some text ’), or ’ some text some text ’.
3. That value is then passed to trim, so ’some text some text’ (without lead­

ing or trailing spaces) is assigned to current.
4. Finally, the current value is passed to dot and the result some.text..some.text.

is returned.

24 JavaScript for Data Science

3.3 ANONYMOUS FUNCTIONS

Remember the function oneMore? We can pass it a value that we have calculated on
the fly:

oneMore = (x) => {
return x + 1

}

console.log(oneMore(3 * 2))

7

Behind the scenes, JavaScript allocates a nameless temporary variable to hold the
value of 3 * 2, then passes a reference to that temporary variable into oneMore. We
can do the same thing with functions, i.e., create one on the fly without giving it a
name as we’re passing it into some other function. For example, suppose that instead
of pushing one value through a pipeline of functions, we want to call a function once
for each value in an array:

const transform = (values, operation) => {
let result = []
for (let v of values) {
result.push(operation(v))

}
return result

}

const data = ['one', 'two', 'three']

const upper = transform(data, (x) => { return x.toUpperCase() })

console.log(�upper: ${upper}�)

upper: ONE,TWO,THREE

Taking the first letter of a word is so simple that it’s hardly worth giving the
function a name, so let’s move the definition into the call to transform:

const first = transform(data, (x) => { return x[0] })
console.log(�first: ${first}�)

first: o,t,t

A function that is defined where it is used and isn’t assigned a name is called an
anonymous function. Most callback functions in JavaScript are written this way:
the function with the given parameters and body (in this case, x and return x[0])
is passed directly to something else (in this case, transform) to be called.

Callbacks 25

3.4 FUNCTIONAL PROGRAMMING

Functional programming is a style of programming that relies heavily on higher-
order functions like pipeline that take other functions as parameters. In addition,
functional programming expects that functions won’t modify data in place, but will
instead create new data from old. For example, a true believer in functional program­
ming would be saddened by this:

// Create test array
const test = [1,2,3]

const impure = (values) => {
for (let i in values) {
values[i] += 1

}
}

// Run function
impure(test)

// Original array has been modified
console.log(�test: ${test}�)

test: 2,3,4

and would politely but firmly suggest that it be rewritten like this:

const test = [1,2,3]

const pure = (values) -> {
result = []
for (let v of values) {
result.push(v + 1)

}
return result

}

// Rather than modify test, we create a new array for the results
const newArray = pure(test)
console.log(�newArray: ${newArray}$�)
console.log(�test: ${test}�)

newArray: 2,3,4
test: 1,2,3

JavaScript arrays provide several methods to support functional programming.
For example, Array.some returns true if any element in an array passes a test,
while Array.every returns true if all elements in an array pass a test. Here’s how
they work:

const data = ['this', 'is', 'a', 'test']
console.log('some longer than 3:',

data.some((x) => { return x.length > 3 }))
console.log('all longer than 3:',

data.every((x) => { return x.length > 3 }))

26 JavaScript for Data Science

some longer than 3: true
all longer than 3: false

Array.filter creates a new array containing only values that pass a test:

const data = ['this', 'is', 'a', 'test']
console.log('those longer than 3:',

data.filter((x) => { return x.length > 3 }))

those longer than 3: ['this', 'test']

So do all of the elements with more than 3 characters start with a ‘t’?

const data = ['this', 'is', 'a', 'test']
const result = data

.filter((x) => { return x.length > 3 })

.every((x) => { return x[0] === 't' })
console.log(�all longer than 3 start with t: ${result}�)

all longer than 3 start with t: true

Array.map creates a new array by calling a function for each element of an ex­
isting array:

const data = ['this', 'is', 'a', 'test']

console.log('shortened', data.map((x) => { return x.slice(0, 2) }))

shortened ['th', 'is', 'a', 'te']

Finally, Array.reduce reduces an array to a single value using a combining
function and a starting value. The combining function must take two values, which
are the current running total and the next value from the array; if the array is empty,
Array.reduce returns the starting value.

An example will make this clearer. To start, let’s create an acronym using a loop:

const data = ['this', 'is', 'a', 'test']

let acronym = ''

for (let value of data) {

acronym = acronym + value[0]

}

console.log(�acronym of ${data} is ${acronym}�)

acronym of this,is,a,test is tiat

The three key elements in the short program above are the input data, the ini­
tial value of the variable acronym, and the way that variable is updated. When
Array.reduce is used, the array is the data and the initial value and update function
are passed as parameters:

Callbacks 27

const data = ['this', 'is', 'a', 'test']

const concatFirst = (accumulator, nextValue) => {
return accumulator + nextValue[0]

}
let acronym = data.reduce(concatFirst, '')
console.log(�acronym of ${data} is ${acronym}�)

acronym of this,is,a,test is tiat

As elsewhere, we can define the function where we use it:

const data = ['this', 'is', 'a', 'test']

acronym = data.reduce((accum, next) => {
return accum + next[0]

}, '')
console.log('all in one step:', acronym)

all in one step: tiat

The indentation of the anonymous function defined inside reduce may look a
little odd, but this is the style the JavaScript community has settled on.

3.5 CLOSURES

The last tool we need to introduce is an extremely useful side effect of the way mem­
ory is handled. The easiest way to explain it is by example. We have already defined
a function called pipeline that chains any number of other functions together:

const pipeline = (initial, operations) => {
let current = initial
for (let op of operations) {
current = op(current)

}

return current

}

However, pipeline only works if each function in the array operations has a
single parameter. If we want to be able to add 1, add 2, and so on, we have to write
separate functions, which is annoying.

A better option is to write a function that creates the function we want:

const adder = (increment) => {
const f = (value) => {
return value + increment

}

return f

}

const add_1 = adder(1)

const add_2 = adder(2)

console.log(�add_1(100) is ${add_1(100)}, add_2(100) is ${add_2(100)}�)

28 JavaScript for Data Science

adder

Variables Values

add_1

increment

gl
ob

al
ad

de
r

...instructions...

add_2

1

f

Figure 3.7: Creating an Adder (Step 1)

add_1(100) is 101, add_2(100) is 102

The best way to understand what’s going on is to draw a step-by-step memory
diagram. In step 1, we call adder(1) (Figure 3.7). adder creates a new function
that includes a reference to that 1 we just passed in (Figure 3.8). In step 3, adder
returns that function, which is assigned to add_1 (Figure 3.9). Crucially, the function
that add_1 refers to still has a reference to the value 1, even though that value isn’t
referred to any longer by anyone else.

In steps 4–6, we repeat these three steps to create another function that has a
reference to the value 2, and assign that function to add_2 (Figure 3.10).
When we now call add_1 or add_2, they add the value passed in and the value
they’ve kept a reference to.

This trick of capturing a reference to a value inside something else is called a clo­
sure. It works because JavaScript holds on to values as long as anything, anywhere,
still refers to them. Closures solve our pipeline problem by letting us define little
functions on the fly and give them extra data to work with:

const result = pipeline(100, [adder(1), adder(2)])
console.log(�adding 1 and 2 to 100 -> ${result}�)

adding 1 and 2 to 100 -> 103

Again, adder(1) and adder(2) do not add anything to anything: they define new
(unnamed) functions that add 1 and 2 respectively when called.

Programmers often go one step further and define little functions like this inline:

const result = pipeline(100, [(x) => x + 1, (x) => x + 2])
console.log(�adding 1 and 2 to 100 -> ${result}�)

adding 1 and 2 to 100 -> 103

Callbacks 29

adder

Variables Values

add_1

increment

gl
ob

al
ad

de
r

...instructions...

add_2

1

f ...instructions...

Figure 3.8: Creating an Adder (Step 2)

adder

Variables Values

add_1gl
ob

al

...instructions...

add_2

1...instructions...

Figure 3.9: Creating an Adder (Step 3)

adder

Variables Values

add_1gl
ob

al

...instructions...

add_2

1...instructions...

2...instructions...

Figure 3.10: Creating an Adder (Steps 4-6)

30 JavaScript for Data Science

As this example shows, if the body of a function is a single expression, it doesn’t
have to be enclosed in {...} and return doesn’t need to be used.

3.6 EXERCISES

SIDE EFFECTS WITH FOREACH

JavaScript arrays have a method called forEach, which calls a callback function
once for each element of the array. Unlike map, forEach does not save the values
returned by these calls or return an array of results. The full syntax is:

someArray.forEach((value, location, container) => {
// 'value' is the value in 'someArray'

// 'location' is the index of that value

// 'container' is the containing array (in this case, 'someArray')

})

If you only need the value, you can provide a callback that only takes one param­
eter; if you only need the value and its location, you can provide a callback that takes
two. Use this to write a function doubleInPlace that doubles all the values in an
array in place:

const vals = [1, 2, 3]

doubleInPlace(vals)

console.log(�vals after change: ${vals}�)

vals after change: 2,4,6

ANNOTATING DATA

Given an array of objects representing observations of wild animals:

data = [
{'date': '1977-7-16', 'sex': 'M', 'species': 'NL'},
{'date': '1977-7-16', 'sex': 'M', 'species': 'NL'},
{'date': '1977-7-16', 'sex': 'F', 'species': 'DM'},
{'date': '1977-7-16', 'sex': 'M', 'species': 'DM'},
{'date': '1977-7-16', 'sex': 'M', 'species': 'DM'},
{'date': '1977-7-16', 'sex': 'M', 'species': 'PF'},
{'date': '1977-7-16', 'sex': 'F', 'species': 'PE'},
{'date': '1977-7-16', 'sex': 'M', 'species': 'DM'}

]

write a function that returns a new array of objects like this:

newData = [
{'seq': 3, 'year': '1977', 'sex': 'F', 'species': 'DM'},
{'seq': 7, 'year': '1977', 'sex': 'F', 'species': 'PE'}

]

without using any loops. The changes are:

Callbacks	 31

•	 The date field is replaced with just the year.
•	 Only observations of female animals are retained.
•	 The retained records are given sequence numbers to relate them back to the orig­

inal data. (These sequence numbers are 1-based rather than 0-based.)

You will probably want to use Array.reduce to generate the sequence numbers.

KEY POINTS

•	 JavaScript stores the instructions making up a function in memory like any other
object.

•	 Function objects can be assigned to variables, put in lists, passed as arguments to
other functions, etc.

•	 Functions can be defined in place without ever being given a name.
•	 A callback function is one that is passed in to another function for it to execute at

a particular moment.
•	 Functional programming uses higher-order functions on immutable data.
•	 Array.some is true if any element in an array passes a test, while Array.every

is true if they all do.
•	 Array.filter selects elements of an array that pass a test.
•	 Array.map creates a new array by transforming values in an existing one.
•	 Array.reduce reduces an array to a single value.
•	 A closure is a set of variables captured during the definition of a function.

http://taylorandfrancis.com

4 Objects and Classes

Making new code use old code is easy: just load the libraries you want and write
calls to the functions you need. Making old code use new code without rewriting it
is trickier, but object-oriented programming (OOP) can help.

4.1 DOING IT BY HAND

As we saw in Chapter 2, an object in JavaScript is a set of key-value pairs. Since
functions are just another kind of data, an object’s values can be functions, so data
can carry around functions that work on it. For example, we can create an object to
represent a square:

const square = {
name: 'square',
size: 5,
area: (it) => { return it.size * it.size },
perimeter: (it) => { return 4 * it.size }

}

and then pass the object itself into each of its own functions:

const a = square.area(square)
console.log(�area of square is ${a}�)

area of square is 25

This is clumsy—we’ll often forget to pass the object into its functions—but it
allows us to handle many different kinds of things in the same way. For example, we
can create another object to represent a circle:

const circle = {
name: 'circle',
radius: 3,
area: (it) => { return Math.PI * it.radius * it.radius },
perimeter: (it) => { return 2 * Math.PI * it.radius }

}

and then put all of these different objects in an array and operate on them in the same
way without knowing precisely what kind of object we’re dealing with:

const show_all = (shapes) => {
for (let s of shapes) {
const a = s.area(s)
const p = s.perimeter(s)
console.log(�${s.name}: area ${a} perimeter ${p}�)

}
}

show_all([square, circle])

33

34 JavaScript for Data Science

square: area 25 perimeter 20
circle: area 28.274333882308138 perimeter 18.84955592153876

As long as we only use the value name and the functions area and perimeter
we don’t need to know what kind of shape we have. This is called polymorphism,
and it allows us to add new shapes without changing the code in our loop. In other
words, it allows old code (in this case, the function show_all) to use new code (the
new object rectangle):

const rectangle = {
name: 'rectangle',
width: 2,
height: 3,
area: (it) => { return it.width * it.height },
perimeter: (it) => { return 2 * (it.width + it.height) }

}

show_all([square, circle, rectangle])

square: area 25 perimeter 20
circle: area 28.274333882308138 perimeter 18.84955592153876
rectangle: area 6 perimeter 10

4.2 CLASSES

Building every object by hand and calling thing.function(thing) is clumsy.
JavaScript solved these problems using prototypes, which turned out to be almost
as clumsy as our hand-rolled solution (Section G.3). Most object-oriented languages
use classes instead (Figure 4.1); these were added to JavaScript in ES6, and we will
use them instead of prototypes throughout. Here’s how we create a class that defines
the properties of a square, without actually creating any specific squares:

class Square {
constructor (size) {

this.name = 'square'

this.size = size

}

area () { return this.size * this.size }

perimeter () { return 4 * this.size }

}

(Class names are written in CamelCase by convention.) We can then create a specific
square by using the class’s name as if it were a function:

const sq = new Square(3)

console.log(�sq name ${sq.name} and area ${sq.area()}�)

sq name square and area 9

35 Objects and Classes

constructor

area

perimeter

Square

...code...

...code...

...code...

name

size

"square"

3

sq

Figure 4.1: Objects and Classes in Memory

new ClassName(...) creates a new blank object and marks it to show that it
is an instance of ClassName. Objects need to know what class they belong to so
that they can find their methods, which are the functions defined within the class
that operate on instances of it. (We’ll explain how JavaScript marks objects in Sec­
tion G.3; it’s more complicated than it needs to be in order to be compatible with
older versions of the language.)

Before new hands the newly-created object back to the program, it calls the
specially-named constructor to initialize the object’s state. Inside the constructor
and other methods, the object being operated on is referred to by the pronoun this.
For example, if the constructor assigns an array to this.values, then every instance
of that class gets its own array.

Everything Old is New Again
Methods are defined within a class using classic function syntax rather
than the fat arrows we have been using. The inconsistency is unfortu­
nate but this way of defining methods is what the current version of Node
prefers; we will explore this topic further in Chapter 8.

There are a lot of new terms packed into the preceding three paragraphs, so let’s
retrace the execution of:

const sq = new Square(3)

console.log(�sq name ${sq.name} and area ${sq.area()}�)

1.	 new creates a blank object, then looks up the definition of the class Square and
calls the constructor defined inside it with the value 3.

2. Inside that call, this refers to the newly-created blank object. The constructor
adds two keys to the object: name, which has the value ’square’, and size,
which has the value 3.

3. Once the constructor finishes, the newly-created object is assigned to the variable
sq.

4. In order to create a string to pass to console.log, the program has to look up
the value of sq.name, which works like looking up any other key in an object.

36 JavaScript for Data Science

5. The program also has to call sq.area. During that call, JavaScript temporarily
assigns sq to the variable this so that the area method can look up the value of
size in the object it’s being called for.

6. Finally, the program fills in the template string and calls console.log.

JavaScript classes support polymorphism: if two or more classes have some meth­
ods with the same names that take the same parameters and return the same kinds
of values, other code can use objects of those classes interchangeably. For example,
here’s a class-based rewrite of our shapes code:

class Circle {
constructor (radius) {

this.name = 'circle'

this.radius = radius

}

area () { return Math.PI * this.radius * this.radius }

perimeter () { return 2 * Math.PI * this.radius }

}

class Rectangle {
constructor (width, height) {

this.name = 'rectangle'

this.width = width

this.height = height

}

area () { return this.width * this.height }

perimeter () { return 2 * (this.width + this.height) }

}

const everything = [
new Square(3.5),
new Circle(2.5),
new Rectangle(1.5, 0.5)

]
for (let thing of everything) {
const a = thing.area(thing)
const p = thing.perimeter(thing)
console.log(�${thing.name}: area ${a} perimeter ${p}�)

}

square: area 12.25 perimeter 14
circle: area 19.634954084936208 perimeter 15.707963267948966
rectangle: area 0.75 perimeter 4

4.3 INHERITANCE

We can build new classes from old ones by adding or overriding methods. To show
this, we’ll start by defining a person:

class Person {
constructor (name) {
this.name = name

}

37 Objects and Classes

greeting (formal) {

if (formal) {

return �Hello, my name is ${this.name}�

} else {

return �Hi, I'm ${this.name}�

}

}

farewell () {
return �Goodbye�

}
}

This class allows us to create an instance with a formal greeting:

const parent = new Person('Hakim')

console.log(�parent: ${parent.greeting(true)} - ${parent.farewell()}�)

parent: Hello, my name is Hakim - Goodbye

We can now extend Person to create a new class Scientist, in which case
we say that Scientist inherits from Person, or that Person is a parent class of
Scientist and Scientist is a child class of Person.

class Scientist extends Person {
constructor (name, area) {

super(name)

this.area = area

}

greeting (formal) {
return �${super.greeting(formal)}. Let's talk about ${this.area}...�

}
}

This tells us that a Scientist is a Person who:

•	 Has an area of specialization as well as a name.
•	 Says hello in a slightly longer way
•	 Says goodbye in the same way as a Person (since Scientist doesn’t define its

own farewell method)

The word super is used in two ways here:

•	 In the constructor for Scientist, super(...) calls up to the constructor of
the parent class Person so that it can do whatever initialization it does before
Scientist does its own initialization. This saves us from duplicating steps.

38	 JavaScript for Data Science

•	 Inside greeting, the expression super.greeting(formal) means “call the
parent class’s greeting method for this object”. This allows methods defined
in child classes to add to or modify the behavior of methods defined in parent
classes, again without duplicating code.

Let’s try it out:

const child = new Scientist('Bhadra', 'microbiology')
console.log(�child: ${child.greeting(false)} - ${child.farewell()}�)

child: Hi, I'm Bhadra. Let's talk about microbiology... - Goodbye

Figure 4.2 shows what memory looks like after these classes have been defined
and the objects parent and child have been created. It looks complex at first, but
allows us to see how JavaScript finds the right method when child.farewell() is
called:

•	 It looks in the object child to see if there’s a function there with the right name.
•	 There isn’t, so it follows child’s link to its class Scientist to see if a function

is there.
•	 There isn’t, so it follows the link from Scientist to the parent class Person and

finds the function it’s looking for.

4.4 EXERCISES

DELAYS

Define a class called Delay whose call method always returns the value given in
the previous call:

const example = new Delay('a')
for (let value of ['b', 'c', 'd']) {
console.log(value, '->', example.call(value))

}

b -> a
c -> b
d -> c

A class like Delay is sometimes called stateful, since it remembers its state from
call to call.

FILTERING

Define a class called Filter whose call method returns null if its input matches
one of the values given to its constructor, or the input as output otherwise:

39 Objects and Classes

Variables Objects

constructor

greeting

farewell
...instructions...

...instructions...

...instructions...

Person

Scientist
constructor

greeting ...instructions...

...instructions...

parent class

parent

child

name "Hakim"

name

area

"Bhadra"

"microbiology"

class

class

Attributes

Figure 4.2: Object-Oriented Inheritance

const example = new Filter('a', 'e', 'i', 'o', 'u')
for (let value of ['a', 'b', 'c', 'd', 'e']) {
console.log(value, '->', example.call(value))

}

a -> null
b -> b
c -> c
d -> d
e -> null

A class like Filter is sometimes called stateless, since it does not remember its
state from call to call.

PIPELINES

Define a class called Pipeline whose constructor takes one or more objects with
a single-parameter call method, and whose own call method passes a value

40 JavaScript for Data Science

through each of them in turn. If any of the components’ call methods returns null,
Pipeline stops immediately and returns null.

const example = new Pipeline(new Filter('a', 'e', 'i', 'o', 'u'),
new Delay('a'))

for (let value of ['a' ,'b', 'c', 'd', 'e']) {
console.log(value, '->', example.call(value))

}

a -> null
b -> a
c -> b
d -> c
e -> null

ACTIVE EXPRESSIONS

Consider this class:

class Active {
constructor (name, transform) {

this.name = name

this.transform = transform

this.subscribers = []

}

subscribe (someone) {

this.subscribers.push(someone)

}

update (input) {

console.log(this.name, 'got', input)

const output = this.transform(input)

for (let s of this.subscribers) {

s.update(output)

}
}

}

and this program that uses it:

const start = new Active('start', (x) => Math.min(x, 10))

const left = new Active('left', (x) => 2 * x)

const right = new Active('right', (x) => x + 1)

const final = new Active('final', (x) => x)

start.subscribe(left)

start.subscribe(right)

left.subscribe(final)

right.subscribe(final)

start.update(123)

1. Trace what happens when the last line of the program is called.

41 Objects and Classes

2. Modify Active so that it calls transform if that function was provided, or a
method Active.transform if a transformation function wasn’t provided.

3. Create a new class Delay whose transform method always returns the previous
value. (Its constructor will need to take an initial value as a parameter.)

This pattern is called observer/observable.

KEY POINTS

• Create classes to define combinations of data and behavior.
• Use the class’s constructor to initialize objects.
• this refers to the current object.
• Use polymorphism to express common behavior patterns.
• Extend existing classes to create new ones-sometimes.
• Override methods to change or extend their behavior.

http://taylorandfrancis.com

5 HTML and CSS

HTML is the standard way to represent documents for presentation in web browsers,
and CSS is the standard way to describe how it should look. Both are more compli­
cated than they should have been, but in order to create web applications, we need to
understand a little of both.

5.1 FORMATTING

An HTML document contains elements and text (and possibly other things that
we will ignore for now). Elements are shown using tags: an opening tag <tagname>
shows where the element begins, and a corresponding closing tag </tagname> (with
a leading slash) shows where it ends. If there’s nothing between the two, we can write
<tagname/> (with a trailing slash).

A document’s elements must form a tree (Figure 5.1), i.e., they must be strictly
nested. This means that if Y starts inside X, Y must end before X ends, so
<X>...<Y>...</Y></X> is legal, but <X>...<Y>...</X></Y> is not. Finally, ev­
ery document should have a single root element that encloses everything else, al­
though browsers aren’t strict about enforcing this. In fact, most browsers are pretty
relaxed about enforcing any kind of rules at all, since most people don’t obey them
anyway.

5.2 TEXT

The text in an HTML page is normal printable text. However, since < and > are used
to show where tags start and end, we must use escape sequences to represent them,
just as we use \" to represented a literal double-quote character inside a double-
quoted string in JavaScript. In HTML, escape sequences are written &name;, i.e.,
an ampersand, the name of the character, and a semi-colon. A few common escape
sequences are shown in Table 5.1.

Name Escape Sequence Character
Less than < <
Greater than > >
Ampersand & &
Copyright © ©
Plus/minus ± ±
Micro µ µ

Table 5.1: HTML Escapes

The first two are self-explanatory, and & is needed so that we can write a

43

44	 JavaScript for Data Science

literal ampersand (just as \\ is needed in JavaScript strings so that we can write
a literal backslash). ©, ±, and µ are usually not needed any
longer, since most editors will allow us to put non-ASCII characters directly into
documents these days, but occasionally we will run into older or stricter systems.

5.3 PAGES

An HTML page should have:

•	 a single html element that encloses everything else
•	 a single head element that contains information about the page
•	 a single body element that contains the content to be displayed.

It doesn’t matter whether or how we indent the tags showing these elements and
the content they contain, but laying them out on separate lines and indenting to show
nesting helps human readers. Well-written pages also use comments, just like code:
these start with <!-- and end with -->. Unfortunately, comments cannot be nested,
i.e., if you comment out a section of a page that already contains a comment, the
results are unpredictable.

Here’s an empty HTML page with the structure described above:

<html>
<head>
<!-- description of page goes here -->

</head>

<body>

<!-- content of page goes here -->

</body>
</html>

Nothing shows up if we open this in a browser, so let’s add a little content:

<html>
<head>
<title>This text is displayed in the browser bar</title>

</head>
<body>
<h1>Displayed Content Starts Here</h1>
<p>

This course introduces core features of JavaScript

and shows where and how to use them.

</p>
<!-- The word "JavaScript" is in italics (emphasis) in the preceding -->

<!-- paragraph. -->
</body>

</html>

•	 The title element inside head gives the page a title. This is displayed in the
browser bar when the page is open, but is not displayed as part of the page itself.

45 HTML and CSS

html

head

title

body

h1

p

"This text is displayed in the browser bar"

"\n "

"\n "

"Displayed Content Starts Here"

"\n This course shows..."

Figure 5.1: HTML as a Tree

•	 The h1 element is a level-1 heading; we can use h2, h3, and so on to create sub­
headings.

•	 The p element is a paragraph.
•	 Inside a heading or a paragraph, we can use em to emphasize text. We can also

use strong to make text stronger. Tags like these are better than tags like i
(for italics) or b (for bold) because they signal intention rather than forcing a
particular layout. Someone who is visually impaired, or someone using a small-
screen device, may want emphasis of various kinds displayed in different ways.

5.4 ATTRIBUTES

Elements can be customized by giving them attributes, which are written as
name="value" pairs inside the element’s opening tag. For example:

<h1 align="center">A Centered Heading</h1>

centers the h1 heading on the page, while:

<p class="disclaimer">This planet provided as-is.</p>

46 JavaScript for Data Science

marks this paragraph as a disclaimer. That doesn’t mean anything special to HTML,
but as we’ll see later, we can define styles based on the class attributes of elements.

An attribute’s name may appear at most once in any element, just like
a key can only appear once in any JavaScript object, so <p align="left"
align="right">...</p> is illegal. If we want to give an attribute multiple
values—for example, if we want an element to have several classes—we put all the
values in one string. Unfortunately, as the example below shows, HTML is inconsis­
tent about whether values should be separated by spaces or semi-colons:

<p class="disclaimer optional" style="color: blue; font-size: 200%;">

However they are separated, values are supposed to be quoted, but in practice we
can often get away with name=value. And for Boolean attributes whose values are
just true or false, we can even sometimes just get away with name on its own.

5.5 LISTS

Headings and paragraphs are all very well, but data scientists need more. To create
an unordered (bulleted) list, we use a ul element, and wrap each item inside the list
in li. To create an ordered (numbered) list, we use ol instead of ul, but still use li
for the list items.

first
second
third

• first
• second
• third

first
second
third

1. first
2. second
3. third

Lists can be nested by putting the inner list’s ul or ol inside one of the outer list’s
li elements:

Major A

HTML and CSS 47

minor p

minor q

Major B

minor r

minor s

1. Major A
1. minor p
2. minor q

2. Major B
1. minor r
2. minor s

5.6 TABLES

Lists are a great way to get started, but if we really want to impress people with
our data science skills, we need tables. Unsurprisingly, we use the table element to
create these. Each row is a tr (for “table row”), and within rows, column items are
shown with td (for “table data”) or th (for “table heading”).

<table>
<tr> <th>Alkali</th> <th>Noble Gas</th> </tr>
<tr> <td>Hydrogen</td> <td>Helium</td> </tr>
<tr> <td>Lithium</td> <td>Neon</td> </tr>
<tr> <td>Sodium</td> <td>Argon</td> </tr>

</table>

Alkali Noble Gas
Hydrogen Helium
Lithium Neon
Sodium Argon

Do not use tables to create multi-column layouts: there’s a better way.

5.7 LINKS

Links to other pages are what make HTML hypertext (Figure 5.2). Confusingly, the
element used to show a link is called a. The text inside the element is displayed
and (usually) highlighted for clicking. Its href attribute specifies what the link is
pointing at; both local filenames and URLs are supported. Oh, and we can use

48 JavaScript for Data Science

other.html
 lower/lower.html

/index.html
 ../other.html

http://js4ds.org

lower/lower.html

other.htmlindex.html

absolute
link

relative
links

relative
link

external
link

Figure 5.2: Pages and Links

to force a line break in text (with a trailing slash inside the tag, since the br element
doesn’t contain any content):

Node.js

React

home page (relative path)

This appears as:

Node.js
React
home page (relative path)

with the usual clickability.

5.8 IMAGES

Images can be stored inside HTML pages in two ways: by using SVG (which we
will discuss in Chapter 8) or by encoding the image as text and including that text in
the body of the page, which is clever, but makes the source of the pages very hard to
read.

It is far more common to store each image in a separate file and refer to that file
using an img element (which also allows us to use the image in many places without
copying it). The src attribute of the img tag specifies where to find the file; as with
the href attribute of an a element, this can be either a URL or a local path. Every
img should also include a title attribute (whose purpose is self-explanatory) and
an alt attribute with some descriptive text to aid accessibility and search engines.
(Again, we have wrapped and broken lines so that they will display nicely in the
printed version.)

HTML and CSS	 49

<img src="./assets/logo.png" title="Book Logo"
alt="Displays the book logo using a local path" />

<img src="https://js4ds.org/assets/logo.png"
title="Book Logo"
alt="Display the book logo using a URL" />

Two things to note here are:

1. Since	 img elements don’t contain any text, they are often written with the
trailing-slash notation. However, they are also often written improperly as <img
src="..."> without any slashes at all. Browsers will understand this, but some
software packages will complain.

2. If an image file is referred to using a path rather than a URL, that path can be either
relative or absolute. If it’s a relative path, it’s interpreted starting from where the
web page is located; if it’s an absolute path, it’s interpreted relative to wherever
the web browser thinks the root directory of the filesystem is. As we will see
in Chapter 12, this can change from one installation to the next, so you should
always try to use relative paths, except where you can’t. It’s all very confusing. . .

5.9 CASCADING STYLE SHEETS

When HTML first appeared, people styled elements by setting their attributes:

<html>
<body>
<h1 align="center">Heading is Centered</h1>
<p>

Text can be highlighted

or colorized.

</p>
</body>

</html>

Many still do, but a better way is to use Cascading Style Sheets (CSS). These
allow us to define a style once and use it many times, which makes it much easier
to maintain consistency. (We were going to say “. . . and keep pages readable”, but
given how complex CSS can be, that’s not a claim we feel we can make.) Here’s a
page that uses CSS instead of direct styling:

<html>
<head>
<link rel="stylesheet" href="simple-style.css" />

</head>
<body>
<h1 class="title">Heading is Centered</h1>
<p>

Text can be highlighted

or colorized.

</p>
</body>

</html>

50 JavaScript for Data Science

The head contains a link to an external style sheet stored in the same directory
as the page itself; we could use a URL here instead of a relative path, but the link
element must have the rel="stylesheet" attribute. Inside the page, we then set
the class attribute of each element we want to style.

The file simple-style.css looks like this:

h1.title {
text-align: center;

}
span.keyword {
font-weight: bold;

}
.highlight {
color: coral;

}

Each entry has the form tag.class followed by a group of properties inside curly
braces, and each property is a key-value pair. We can omit the class and just write
(for example):

p {
font-style: italic;

}

in which case the style applies to everything with that tag. If we do this, we can over­
ride general rules with specific ones: the style for a disclaimer paragraph is defined
by p with overrides defined by p.disclaimer. We can also omit the tag and simply
use .class, in which case every element with that class has that style.

As suggested by the earlier discussion of separators, elements may have multiple
values for class, as in (The
span element simply marks a region of text, but has no effect unless it’s styled.)

These features are one (but unfortunately not the only) common source of confu­
sion with CSS: if one may override general rules with specific ones but also provide
multiple values for class, how do we keep track of which rules will apply to an ele­
ment with multiple classes? A detailed discussion of the order of precedence for CSS
rules is outside the scope of this tutorial. We recommend that those likely to work
often with stylesheets read (and consider bookmarking) this W3Schools page1.

One other thing CSS can do is match specific elements. We can label particular
elements uniquely within a page using the id attribute, then refer to those elements
using #name as a selector. For example, if we create a page that gives two spans
unique IDs:

<html>
<head>
<link rel="stylesheet" href="selector-style.css" />

</head>

1https://www.w3schools.com/css/css_specificity.asp

http://www.w3schools.com

HTML and CSS 51

<body>
<p>
First keyword.

</p>

<p>

Full explanation.

</p>

</body>

</html>

then we can style those spans like this:

#major {
text-decoration: underline red;

}
#minor {
text-decoration: overline blue;

}

Internal Links
We can link to an element in a page using #name inside the link’s
href: for example, text refers to
the #place element in page.html. This is particularly useful within
pages: jump takes us straight to the #place
element within this page. Internal links like this are often used for cross-
referencing and to create a table of contents.

5.10 BOOTSTRAP

CSS can become very complicated very quickly, so most people use a framework to
take care of the details. One of the most popular is Bootstrap2 (which is what we use
to style our website). Here’s the entire source of a page that uses Bootstrap to create
a two-column layout with a banner at the top (Figure 5.3):

<html>
<head>
<link rel="stylesheet"

href="https://stackpath.bootstrapcdn.com/bootstrap/\
4.1.3/css/bootstrap.min.css">

<style>
div {
border: solid 1px;

}
</style>

</head>

<body>

<div class="jumbotron text-center">

2https://getbootstrap.com/

https://getbootstrap.com

52 JavaScript for Data Science

Figure 5.3: Bootstrap Layout

<h1>Page Title</h1>

<p>Resize this page to see the layout adjust dynamically.</p>

</div>

<div class="container">

<div class="row">

<div class="col-sm-4">

<h2>First column is 4 wide</h2>

<p>Text here goes</p>

<p>in the column</p>

</div>
<div class="col-sm-8">

<h2>Second column is 8 wide</h2>

<p>Text over here goes</p>

<p>in the other column</p>

</div>

</div>

</div>

</body>
</html>

The page opens by loading Bootstrap from the web; we can also download
bootstrap.min.css and refer to it with a local path. (The .min in the file’s name
signals that the file has been minimized so that it will load more quickly.)

The page then uses a style element to create an internal style sheet to put a solid
one-pixel border around every div so that we can see the regions of the page more
clearly. Defining styles in the page header is generally a bad idea, but it’s a good way
to test things quickly. Oh, and a div just marks a region of a page without doing
anything to it, just as a span marks a region of text without changing its appearance

HTML and CSS 53

unless we apply a style.
The first div creates a header box (called a “jumbotron”) and centers its text. The

second div is a container, which creates a bit of margin on the left and right sides of
our content. Inside that container is a row with two columns, one 4/12 as wide as the
row and the other 8/12 as wide. (Bootstrap uses a 12-column system because 12 has
lots of divisors.)

Bootstrap is responsive: elements change size as the page grows narrower, and
are then stacked when the screen becomes too small to display them side by side.

We’ve left out many other aspects of HTML and CSS as well, such as figure cap­
tions, multi-column table cells, and why it’s so hard to center text vertically within
a div. One thing we will return to in Chapter 10 is how to include interactive ele­
ments like buttons and forms in a page. Handling those is part of why JavaScript was
invented in the first place, but we need more experience before tackling them.

5.11 EXERCISES

CUTTING CORNERS

What does your browser display if you forget to close a paragraph or list item tag
like this:

<p>This paragraph starts but doesn't officially end.

<p>Another paragraph starts here but also doesn't end.

First item in the list isn't closed.
Neither is the second.

1. What happens if you don’t close a ul or ol list?
2. Is that behavior consistent with what happens when you omit </p> or ?

MIX AND MATCH

1. Create a page that contains a 2x2 table, each cell of which has a three-item bullet-
point list. How can you reduce the indentation of the list items within their cells
using CSS?

2. Open your page in a different browser (e.g., Firefox or Edge). Do they display
your indented lists consistently?

3. Why do programs behave inconsistently? Why do programmers do this to us?
Why? Why why why why why?

NAMING

What does the sm in Bootstrap’s col-sm-4 and col-sm-8 stand for? What other
options could you use instead? Why do web developers still use FORTRAN-style
names in the 21st Century?

54 JavaScript for Data Science

COLOR

HTML and CSS define names for a small number of colors. All other colors must
be specified using RGB values. Write a small JavaScript program that creates an
HTML page that displays the word color in 100 different randomly-generated col­
ors. Compare this to the color scheme used in your departmental website. Which one
hurts your eyes less?

UNITS

What different units can you use to specify text size in CSS? What do they mean?
What does anything mean, when you get right down to it?

KEY POINTS

•	 HTML is the latest in a long line of markup languages.
•	 HTML documents contain elements (represented by tags in angle brackets) and

text.
•	 Elements must be strictly nested.
•	 Elements can contain attributes.
•	 Use escape sequences beginning with ampersand to represent special characters.
•	 Every page should have one html element containing a head and a body.
•	 Use <!--...--> to include comments in HTML.
•	 Use ul and ol for unordered and ordered lists, and li for list elements.
•	 Use table for tables, tr for rows, th for headings, and td for regular data.
•	 Use ... to create links.
•	 Use to include images.
•	 Use CSS to define appearance of elements.
•	 Use class and id to identify elements.
•	 Use selectors to specify the elements that CSS applies to.

6 Manipulating Pages

We have presented a lot of tools, but as yet no applications. As a reward for your pa­
tience, we will therefore work through several examples that show how to do useful
things to web pages. These examples introduce some new concepts, the most impor­
tant of which is the way in which HTML pages are represented in, and manipulated
by, JavaScript.

One thing these examples don’t show is how to build interactive web pages.
JavaScript was invented primarily to support buttons, forms, and the like, but we
will need a bit more background before exploring them. Still, we can do a surprising
number of useful things simply by playing with the content of pages.

6.1 COUNTING PARAGRAPHS

Let’s begin by counting the number of paragraphs in a page:

<html>
<head>
<meta charset="utf-8"/>

</head>

<body>

<h1>Title</h1>

<div id="fill"></div>

<h2 id="one">First emphasized</h2>

<p>stuff</p>

<h2 id="two">Second <code>with code</code></h2>

<h3>stuff</h3>

<h2 id="three">Third</h2>

<p>stuff</p>

<script>
const counter = () => {

const paragraphs = document.querySelectorAll('p')

return paragraphs.length

}
console.log(�number of paragraphs: ${counter()}�)

</script>
</body>

</html>

This page has three main parts:

1. The head contains a meta tag that specifies the page’s character encoding, i.e.,
the scheme used to represent characters not found on a standard American key­
board in the 1970s. Character sets and character encodings are out of scope for

55

56 JavaScript for Data Science

this lesson; see this essay1 for an unfortunately timeless discussion.
2. The top half of the body has some headings and paragraphs for the JavaScript to

play with. It also contains a div marked with class="fill" that our script will
eventually fill in with a count.

3. The script itself is contained in a script tag at the bottom of the page; we will
explore it in depth below.

When Scripts Run
We have put the script at the bottom of the page because we want to be sure
that the page’s contents actually exist in memory before trying to process
them. If we put the script tag and its contents at the top of the page,
the browser might run our JavaScript after the page has been read but
before its elements and text have been parsed and stored in memory. Race
conditions like this bedevil web programming; we will see more robust
ways to deal with them later.

Inside the script tag, we define a function called counter that takes
no arguments, then use console.log to display the result of calling it. The
only thing inside the function that we haven’t encountered before is the
call document.querySelectorAll(’p’). As you might guess from its name,
document is an object that gives us a handle on the page the script is in; it is created
and provided automatically by the browser. Its querySelectorAll method finds all
elements in the page that match the selector we provide. In this case, we’re looking
for all paragraphs, so we simply search for ’p’.

To see the JavaScript in action, run a browser, open its developer tools so that you
can see the JavaScript console, and then load the page. The page’s elements will be
displayed as usual, and the console will show:

number of paragraphs: 2

Developer Tools
To open developer tools in Firefox, go to the main menu and select Tools
> Web Developer > Toggle Tools. A tabbed display will open in
the bottom of your page; choose Console to view the output of your
JavaScript, or to write a little bit to run immediately. You can open a sim­
ilar set of tools from View > Developer > JavaScript Console in
Chrome, or by using Ctrl+Shift+I on Windows for Firefox, Chrome, or
Microsoft Edge.

Showing results in the console is good enough for development work, but we
would like to see the result in the page itself. To do this, we can replace the call to
console.log with the two lines shown below:

1https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer­
absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/

https://www.joelonsoftware.com
https://www.joelonsoftware.com

Manipulating Pages 57

const counter = () => {
const paragraphs = document.querySelectorAll('p')
return paragraphs.length

}
const fill = document.getElementById('fill')
fill.innerHTML = �number of paragraphs: ${counter()}�

Where document.querySelectorAll returns all nodes that match a selector,
document.getElementById returns a single element that has the specified ID
(which is set inside the element’s opening tag with id="some_name"). The variable
fill is therefore assigned a reference to our div. We can then change the text inside
that element by assigning to its innerHTML property. When we do this, JavaScript
parses the string we provided as if it were HTML and creates whatever nodes it needs
to represent the result. In this case, the content is just text, so JavaScript will create
a single text node, store "number of paragraphs: 2" as its content, and add it to
the in-memory structure that represents the page.

. . . at which point some magic happens behind the scenes. The browser stores the
elements and text of the current page in a data structure called the Document Object
Model, or more commonly the DOM. As shown in Figure 5.1, the DOM is organized
as a tree: each element or piece of text is a node in the tree, and a node’s children are
the elements contained within it. Any time the browser detects a change to the DOM,
it automatically refreshes just as much of its display as it needs to. We can insert or
remove text, change elements’ styles, or copy in entire sub-pages: each time, the
browser will do only the work required to reflect that change as quickly as possible.

6.2 CREATING A TABLE OF CONTENTS

Reporting the number of paragraphs is a good way to see how JavaScript works in the
browser, but isn’t particularly useful (although counting the number of words is—we
will tackle that in the exercises). Something we’re more likely to put in a real page
is a table of contents, which takes only a little more code than what we’ve already
seen:

(() => {
const container = document.getElementById('fill')
const headings = Array.from(document.querySelectorAll('h2'))
const items = headings

.map((h) => �${h.innerHTML}�)

.join('')
container.innerHTML = '' + items + ''

})()

Let’s start with the first and last lines, since they demonstrate a commonly-used
idiom. We’ve seen how to define a function and then call it:

const f = (param) => {
// body

}
f()

58 JavaScript for Data Science

If we’re only going to call the function once, we might as well define it and call it
immediately without giving it a name:

(param) => {
// body

}(actual_value)

However, this doesn’t reliably work as written; in order to make JavaScript happy,
we have to put parentheses around the function definition so that it’s clear exactly
what’s being called:

((param) => {
// body

})(actual_value)

() before the fat arrow means “this function doesn’t take any parameters”. The
second () after the closing curly brace means “call the function”. If the function
doesn’t take any arguments, this becomes:

(() => {
// body

})()

which is a lot of parentheses in a row, but that’s what people write.
Let’s come back to the body of the function:

const container = document.getElementById('fill')

const headings = Array.from(document.querySelectorAll('h2'))

const items = headings

.map((h) => �${h.innerHTML}�)

.join('')

container.innerHTML = '' + items + ''

As before, the first line gets the div we’re going to fill in. The second line grabs all
the h2 headings, which we have arbitrarily decided are the only things worthy of in­
clusion in the table of contents. We run the result of document.querySelectorAll
through the function Array.from because the former’s result isn’t a JavaScript ar­
ray: for reasons that probably made sense to someone, somewhere, it’s a thing called
a NodeList that lacks most of Array’s useful methods.

Static Methods
Array.from is a static method: it belongs to the class as a whole, not to
objects of that class. Static methods are primarily used to associate util­
ity functions with classes, like dist in the example below. Unlike calls
to instance methods like magnitude, static methods are called using
class.method() rather than some_object.method().

We then have three lines that do most of the function’s work. The first tells us
that items is going to be assigned something derived from headings; the second

Manipulating Pages 59

transforms the array of headings into an array of strings, and the third joins those
strings to create a single string. Looking at the map call, each heading becomes a
list item (li) containing a link (a) whose href attribute is the ID of the heading
and whose displayed content (the text between <a...> and) is the text of the
heading. The href attribute’s value starts with #, which makes this a local link (i.e.,
it links to something inside the same page). If one of our h2 headings doesn’t have
an id set, this map will fail; we’ll explore ways to handle this in the exercises.

Finally, the last line of the code shown above fills in the content of the container
(i.e., the div) with an unordered list (ul) that contains all of the items we just con­
structed. Again, when we assign to an element’s innerHTML property, JavaScript
parses the string we give it and constructs the HTML nodes we need. It would be
marginally faster to build these nodes ourselves (which we will do in the exercises),
but building and parsing strings is usually easier to read, and the performance differ­
ences are small enough in modern browsers that we should only worry about them if
they actually prove themselves a problem.

6.3 SORTABLE LISTS

Creating nodes allows us to add content to a page, but we can also rearrange the
nodes that are there (Figure 6.1). Our next exercise is to sort the elements of a list,
so that if the author writes:

pee (P)
cue (Q)
are (R)

we will automatically rearrange the items to be:

are (R)
cue (Q)
pee (P)

Our first attempt uses this as the HTML page:

<html>
<head>

<meta charset="utf-8">

<script src="sort-lists.js"></script>

</head>

<body onload="sortLists()">

<ul class="sorted">

first

second

60 JavaScript for Data Science

third

fourth

fifth

<ol class="sorted">

one

two

three

four

five

</body>
</html>

and this as our initial script:

const sortLists = () => {
const allLists = Array.from(document.querySelectorAll('#sorted'))
lists.forEach((list) => {
const children = Array.from(list.childNodes)

.filter(c => c.nodeName !== '#text')

children.sort((left, right) =>

left.textContent.localeCompare(right.textContent))

while (list.firstChild) {

list.removeChild(list.firstChild)

}

children.forEach(c => list.appendChild(c))

})
}

When we load the page, though, the items aren’t sorted. A bit of trial and error
reveals that we have tripped over the race condition alluded to earlier: if we call our
function in the onload attribute of the body tag, it is run when the page is loaded
into memory but before the page’s content has been parsed and turned into a DOM
tree. After searching online for “run JavaScript when page loaded”, we go back to
this:

<html>
<head>

<meta charset="utf-8">

<script src="sort-lists-event.js"></script>

</head>

<body>
...lists as before...

</body>
</html>

and write our JavaScript like this:

const sortLists = () => {
// ...function to sort lists...

61 Manipulating Pages

page

ul

li lili

ol

li lili

,

children
Array.from

lists.forEach

sort
reattach

sort
reattach

Figure 6.1: Sorting and Replacing

}

document.addEventListener("DOMContentLoaded", (event) => {
sortLists()

})

An event listener is a function that the browser calls when some kind of event
occurs. In our example, the event we care about is “DOM content has been loaded”.
When that occurs, the browser will call sortLists(). (The event parameter to our
function will be given an object that stores details about what precisely happened.
We don’t need that information now, but will use it later when we start handling
button clicks and the like.)

Let’s return to the function:

const sortLists = () => {
const lists = Array.from(document.querySelectorAll('.sorted'))
lists.forEach((list) => {
const children = Array.from(list.childNodes)

.filter(c => c.nodeName !== '#text')
children.sort((left, right) =>

left.textContent.localeCompare(right.textContent))
while (list.firstChild) {
list.removeChild(list.firstChild)

}
children.forEach(c => list.appendChild(c))

})
}

As before, it starts by creating an array containing the nodes we want to operate
on. (We use the selector .sorted (with a leading dot) to select everything with the
class sorted, rather than #sorted, which would find nodes with the ID sorted.)
This array will then have all the ul or ol lists that the function is to sort.

We process each list separately with lists.forEach. The callback function in­
side forEach uses Array.from to create an array containing the child nodes of the
main list element, then filters that list to remove any that are text nodes. We need

62 JavaScript for Data Science

the Array.from call because (once again) the DOM doesn’t use a JavaScript array
to store children, but a structure of its own devising that lacks the methods we want
to call. We remove the text nodes because they represent the whitespace between
list elements, such as newline characters after a closing and before the next
opening .

Identifying Text Nodes
We could check c.nodeType instead of c.nodeName to spot text nodes,
but we felt that nodeName made the code easier to understand. As always,
we use !== for the comparison in order to prevent unpleasant surprises
(Section G.1).

Now that we have an array of the li elements to be sorted, we can use
Array.sort to order them. Since we want to sort them by the text they contain,
we have to provide our own sorting function that returns a negative number, 0, or a
positive number to show whether its left argument is less than, equal to, or greater
than its right argument. We use the textContent member of the node to get the
text it contains, and the string object’s localeCompare to get a -1/0/1 result. All of
this was discovered by searching online, primarily on the W3Schools2 site.

Unfortunately, searching for “remove all children from node” tells us that we have
to do it ourselves, so we use a while loop to remove all the children (including the
unwanted top-level text elements) from the ul or ol list, then add all of the children
back in sorted order. Sure enough, the page now displays the nodes in the right order.

6.4 BIBLIOGRAPHIC CITATIONS

And so we come to the largest example in this lesson. HTML has a cite tag for
formatting citations, but it doesn’t allow us to link directly to a bibliography entry.
In order to minimize typing in scholarly papers, we’d like to find links like this:

key1, key2

and turn them into this:

[key1, key2]

The typed-in form is about as little typing as we can get away with; the displayed
form then wraps the citations in [...] and turns each individual citation into a link
to our bibliography. For now, we’ll assume that the bibliography can be found at
../bib/, i.e., in a file called index.html that’s in a directory called bib that’s
a sibling of the directory containing whatever page the citation is in. This is very
fragile, and we should be ashamed of ourselves, but we can tell ourselves that we’re
going to fix it later and get on with learning JavaScript for now.

Our test page contains two bibliographic links and one non-bibliographic link:

2https://www.w3schools.com/

http://www.w3schools.com

63 Manipulating Pages

<html>
<head>

<meta charset="utf-8">

<script src="citations.js"></script>

</head>

<body>

<p>As Moreau1896 shows...</p>
<p>

We can look to Brundle1982, Brundle1984

for answers.

</p>

<hr/>

<p>Visit the author's site.</p>

</body>
</html>

Here’s our function (Figure 6.2), which we’ll call from an event listener as before:

const citations = () => {
Array.from(document.querySelectorAll('a'))

.filter(link => link.getAttribute('href') === '#b')

.map(link => (

{node: link,
text: link.textContent.split(',').map(s => s.trim())}

))

.map(({node, text}) => (

{node,
text: text.map(cite => �${cite}�)}

))

.map(({node, text}) => (

{node,
text: �[${text.join(', ')}]�}

))

.forEach(({node, text}) => {

const span = document.createElement('span')

span.innerHTML = text

node.parentNode.replaceChild(span, node)

})
}

There is a lot going on here, but it all uses patterns we have seen before. It starts
by building an array of all the links in the document i.e., every a element:

Array.from(document.querySelectorAll('a'))
// output:

// - Moreau1896

// - Brundle1982, Brundle1984

// - the author's site

(We show the nodes in comments to visualize what each step of the pipeline does.)
We then filter this array to find the links pointing at #b, which is what we’re using to
signal citations:

64 JavaScript for Data Science

page

Array.from filter map

node text

,
,
,

map

node text

,
,
,

node text

map

forEach

Figure 6.2: A Processing Pipeline

.filter(link => link.getAttribute('href') === '#b')
// output:

// - Moreau1896

// - Brundle1982, Brundle1984

We now have a problem. We could use a map call to get the text out of each link
and process it, but then all we’d have is an array of strings. We’re going to want the
nodes those strings came out of later on as well so that we can modify their href
attributes, so somehow we have to pass the nodes and strings together through our
pipeline. One option would be to create a two-element array for each:

.map(link => [link, link.textContent.whatever])

but it’s more readable to create an object so that each component has a name:

.map(link => (

{node: link,

text: link.textContent.split(',').map(s => s.trim())}

))

// output:

// - {node: Moreau1896,

// text: ['Moreau1896']}

// - {node: Brundle1982, Brundle1984,

// text: ['Brundle1982', 'Brundle1984']}

Here, we are turning each link into an object whose "node" key has the link’s
DOM node as its value, and whose "text" key has the node’s text, which we split
on commas and trim to remove leading and trailing whitespace.

But we’re not done looking at this stage of our pipeline:

1. We don’t need to quote the names "node" and "text", though we could.

65 Manipulating Pages

2. JavaScript’s String.split returns an array, so the value associated with "text"
is an array. We then map over its elements to trim leading and trailing space from
each.

3. If we wrote link => {node: link, text: whatever}, JavaScript would in­
terpret the curly braces {...} as meaning, “Here is the body of a function,” and
then complain because what’s in those curly braces clearly isn’t a function body.
Putting parentheses around the curly braces, i.e., writing ({...}), tells JavaScript
that the function is returning an object.

After all of this, the next stage of the pipeline is almost a relief:

.map(({node, text}) => (

{node,

text: text.map(cite => �${cite}�)}

))

// output:

// - {node: Moreau1896,

// text: [<a href="../bib/#Moreau1896"Moreau1896]}

// - {node: Brundle1982, Brundle1984,

// text: [Brundle1982,

// Brundle1984]}

All right, that’s not actually much of a relief, but it does make a strange kind of
sense. First, if we have an object whose keys are called a and b, then the call f({a,
b}) means, “Match the value of key a to a parameter called a and the value of key
b to a parameter called b.” This is called destructuring, and can save a lot of wear
and tear on our keyboard and eyes.

Second, if we have a variable called name, then define an object with {name},
JavaScript helpfully assumes that what we mean is {"name": name}, i.e., that we
want a key called "name" with whatever value name currently has. This allows us to
pass the value of node from call to call in our pipeline without typing anything more
than its name.

And after all of this, the text.map call actually is a relief. The value asso­
ciated with the key text is an array of strings, each of which is a bibliography
key. All the map does is convert each to the text we want: a link that refers to
../bib/#citation_key and whose displayed text is also the citation key.

On to the next stage, which joins the string in text together to create a single
string with commas between the entries and square brackets around the whole thing:

.map(({node, text}) => (

{node,

text: �[${text.join(', ')}]�}

))

(We haven’t shown the output in commas because typesetting it would overflow the
page and because our pseudo-HTML notation gets really confusing once we’re show­
ing strings containing HTML that contain strings.)

66	 JavaScript for Data Science

The last stage in our pipeline uses forEach instead of map because we want to
do something for each element of the array, but don’t need a value returned (because
what we’re doing has the side effect of modifying the document):

.forEach(({node, text}) => {

const span = document.createElement('span')

span.innerHTML = text

node.parentNode.replaceChild(span, node)

})

This is the point at which carrying the node itself forward through the pipeline
pays off. We create a span element, fill it in by assigning to its innerHTML property,
and then replace the original link node with the node we have just created. If we now
add an event listener after our function to call it when the page is loaded, we see our
citations formatted as we desired.

6.5	 A REAL-TIME CLOCK

We will wrap up this lesson with an example that is short, but hints at the possibilities
to come:

<html>
<head>
<script>
const startTime = () => {

const today = new Date()

const fields = [today.getHours(),

today.getMinutes(),
today.getSeconds()]

const	 current = fields

.map(t => �${t}�.padStart(2, '0'))

.join(':')

document.getElementById('current').innerHTML = current

setTimeout(startTime, 1000)

}

document.addEventListener("DOMContentLoaded", (event) => {

startTime()

})
</script>

</head>

<body>
<p id="current"></p>

</body>

</html>

Defining a function: check. Calling that function when the DOM is ready: check.
What about inside the function? It’s pretty easy to guess that Date() creates an
object that holds a date, and from the fact that we’re assigning that object to a variable
called today, you might even guess that if we don’t specify which date we want, we

Manipulating Pages 67

get today’s values. We then pull the hours, minutes, and seconds out of the date
and put them in an array so that we can turn each value into a two-character string,
padded with a leading zero if necessary, and then join those strings to create a time
like 17:48:02 to stuff into the element whose ID is current.

But what does setTimeout do? It tells the browser to run a function after some
number of milliseconds have passed. In this case, we’re running the same function
startTime a second from now. That call will change the displayed time, then set up
another callback to run a second later, and so on forever. When we load the page, we
see the current time updating itself second by second to remind us just how quickly
life is passing by.

6.6 EXERCISES

WHAT ENCODING IS THIS?

1. Write a function that looks up the character encoding of the page the script is in
and prints it to the console.

2. Extend the function to look up all the meta tags in the current page and print their
names and values.

WORD COUNT

1. Write a function called countWords that finds all the text nodes in a page, splits
them on whitespace, and returns the total number of words in the page.

2. Write a second function called showWords that uses the first to find the number
of words, then displays that number in a paragraph whose ID is wordcount.

A MORE ROBUST TABLE OF CONTENTS

1. What does the table of contents example generate if an h2 doesn’t have an id
attribute?

2. Modify the example so that it only includes h2 elements that have an id attribute
in the table of contents.

EXPLICITLY CREATING NODES

Find documentation online for the two functions document.createElement and
document.createTextNode, then rewrite the table of contents example to use
these methods (and any others like them that you need) instead of assigning to a
node’s innerHTML property.

KEY POINTS

• Use a meta tag in a page’s header to specify the page’s character encoding.
• Pages are represented in memory using a Document Object Model (DOM).
• The document object represents the page a script is in.

68 JavaScript for Data Science

•	 Use the querySelectorAll method to find DOM nodes that match a condition.
•	 Assign HTML text to a node’s innerHTML property to change the node’s content.
•	 Use ((params) => {...})(arguments) to create and call a function in a sin­

gle step.
•	 An event listener is a function run by the browser when some specific event oc­

curs.
•	 Create an event listener for ’DOMContentLoaded’ to trigger execution of scripts

after the DOM has been constructed.
•	 Check the nodeType or nodeName property of a DOM node to find out what kind

of node it is.
•	 Destructuring assignment allows us to assign to multiple variables by name in a

single statement.
•	 Use setTimeout to trigger execution of a function after a delay.
•	 To make something run forever, have the function called by setTimeout set an­

other timeout of the same function.

7 Dynamic Pages

In the beginning, people created HTML pages by typing them in (just as we have
been doing). They quickly realized that a lot of pages share a lot of content: navi­
gation menus, contact info, and so on. The nearly universal response was to create
a template and embed commands to include other snippets of HTML (like headers)
and loop over data structures to create lists and tables. This is called server-side
page generation: the HTML is generated on the server, and it was popular because
that’s where the data was, and that was the only place complex code could be run.
(This tutorial uses a templating tool called Jekyll1. It’s clumsy and limited, but it’s
the default on GitHub2.)

Server-side generation can be done statically or dynamically, i.e., pages can be
compiled once, stored on disk, and served thereafter, or each page can be recompiled
whenever it’s needed, which makes it easy to include dynamic elements like today’s
top news story (Figure 7.1).

As browsers and JavaScript became more powerful, the balance shifted toward
client-side page generation. In this model, the browser fetches data from one or
more servers and feeds that data to a JavaScript library that generates HTML in the
browser for display. This allows the client to decide how best to render data, which
is increasingly important as phones and tablets take over from desktop and laptop
computers. It also moves the computational burden off the server and onto the client
device, which lowers the cost of providing data.

Many (many) JavaScript frameworks for client-side page generation have been
created, and more are probably being developed right now. We have chosen React3

because it is freely available, widely used, well documented, simpler than many al­
ternatives, and has a cool logo. Its central design principles are:

1. Page creators use functions to describe the HTML they want.
2. They then let React decide which functions to run when data changes.

We will show how to use it in pure JavaScript, then introduce a tool called JSX
that simplifies things.

7.1 HELLO, WORLD

Let’s begin by saying hello:

1https://jekyllrb.com/
2http://github.com/
3https://reactjs.org/

69

https://reactjs.org
http://github.com
https://jekyllrb.com

70 JavaScript for Data Science

source HTML source HTML source

HTML

browser

server

static
server-side
generation

dynamic
server-side
generation

HTML

client-side
generation

HTMLJS

Figure 7.1: Page Generation Alternatives

<!DOCTYPE html>
<html>
<head>

<meta charset="utf-8">

<title>Hello React</title>

<script src="https://fb.me/react-15.0.1.js"></script>

<script src="https://fb.me/react-dom-15.0.1.js"></script>

</head>

<body>

<div id="app">

<!-- this is filled in -->

</div>

<script>

ReactDOM.render(

React.DOM.h1(null, "Hello React"),

document.getElementById("app")

)
</script>

</body>
</html>

The head of the page loads two React libraries from the web; we will use locally-
installed libraries later. The body contains a div with an ID to make it findable.
When our script runs, React will put the HTML it generates into this div.

The script itself creates an h1 with the text “Hello, React” using React.DOM.h1,
then finds the document element whose ID is "app" and uses ReactDOM.render to
insert the former into the latter. This alters the representation of the page in memory,
not the source of the page on disk; if we want to inspect the resulting HTML, we
have to do so in the browser. Finally, we put the script at the bottom of the page so
that the browser will have turned the HTML into a DOM tree in memory before the
script runs. We will come back and fix this later.

71 Dynamic Pages

Inspection Tools
If you are using the Firefox browser, you can open the developer tools pane
by going to the main menu and selecting Tools... Web Developer...
Toggle Tools. A tabbed display will open in the bottom of your page;
choose Inspector to view the content of your page and page’s CSS. As
you move your mouse around the page itself, corresponding structural el­
ements will be highlighted. It’s actually pretty cool. . .

The first parameter to React.DOM.h1 is null in the example above, but it can
more generally be an object that specifies the attributes we want the newly-created
node to have. There are a few quirks in this—for example, we have to use fontStyle
rather than font-style so that the attribute object’s keys look like legal JavaScript
variables—but the mechanism is seductively easy to use:

<body>

<div id="app"></div>

<script>

const attributes = {
'style': {

'background': 'pink',

'fontStyle': 'italic'

}

}

ReactDOM.render(

React.DOM.h1(attributes, "Hello Stylish"),

document.getElementById("app")

)

</script>

</body>

7.2 JSX

Writing nested functions is a clumsy way to write HTML, so most React program­
mers use a tool called JSX4 that translates HTML into JavaScript function calls. And
yes, those JavaScript function calls then produce HTML—it’s a funny world. Here’s
an example:

<!DOCTYPE html>
<html>
<head>

<meta charset="utf-8">

<title>Hello JSX</title>

<script src="https://fb.me/react-15.0.1.js"></script>

<script src="https://fb.me/react-dom-15.0.1.js"></script>

<script src="https://unpkg.com/babel-standalone@6/babel.js"></script>

</head>
<body>

<div id="app"></div>

<script type="text/babel">

4https://reactjs.org/docs/introducing-jsx.html

https://reactjs.org

72 JavaScript for Data Science

ReactDOM.render(

<h1>Hello JSX</h1>,

document.getElementById('app')

)
</script>

</body>
</html>

Along with the two React libraries, this page includes a tool called Babel5 to
translate a mix of HTML and JavaScript into pure JavaScript. To trigger translation,
we add the attribute type="text/babel" to the script tag.

Why bother? Because as the example above shows, it allows us to write
<h1>Hello JSX</h1> instead of calling a function. More generally, JSX lets us
put JavaScript inside our HTML (inside our JavaScript (inside our HTML)), so we
can (for example) use map to turn a list of strings into an HTML list:

<body>
<h1>JSX List</h1>
<div id="app"></div>
<script type="text/babel">
const allNames = ['McNulty', 'Jennings', 'Snyder',

'Meltzer', 'Bilas', 'Lichterman']
ReactDOM.render(
{allNames.map((name) => {name})},
document.getElementById('app')

)

</script>

</body>

We have to use map rather than a loop because whatever code we run has to return
something that can be inserted into the DOM, and for loops don’t return anything.
(We could use a loop to build up a string through repeated concatenation, but map
is cleaner.) And note: we must return exactly one node, because this is one function
call. We will look in the exercises at why the curly braces immediately inside the
 element are necessary.

Note also that when we run this, the browser console will warn us that each list
element ought to have a unique key property, because React wants each element of
the page to be selectable. We will add this later.

7.3 CREATING COMPONENTS

One of the most powerful features of React is that it lets us create new components
that look like custom HTML tags, but are associated with functions that we write.
React requires the names of these components to start with a capital letter to differ­
entiate them from regular tags. We can, for example, define a function ListOfNames
to generate our list of names, then put that element directly in ReactDOM.Render
just as we would put an h1 or p:

5https://babeljs.io/

https://babeljs.io

Dynamic Pages	 73

<body>

<h1>Create Component</h1>

<div id="app"></div>

<script type="text/babel">

const allNames = ['McNulty', 'Jennings', 'Snyder',

'Meltzer', 'Bilas', 'Lichterman']

const ListOfNames = () => {

return ({allNames.map((name) => {name})})

}

ReactDOM.render(

<ListOfNames />,

document.getElementById('app')

)

</script>

</body>

What we really want to do, though, is pass parameters to these components: after
all, JSX is turning them into functions, and functions are far more useful when we
can give them data. In React, all the attributes we put inside the component’s tag are
passed to our function in a single props object:

<body>

<h1>Pass Parameters</h1>

<div id="app"></div>

<script type="text/babel">

const allNames = ['McNulty', 'Jennings', 'Snyder',

'Meltzer', 'Bilas', 'Lichterman']

const	 ListElement = (props) =>

(<li id={props.name}>{props.name})

ReactDOM.render(
{allNames.map((name) => <ListElement name={name} />)},
document.getElementById('app')

)

</script>

</body>

If you look carefully, you’ll see that the name attribute passed to the use of
ListElement becomes the value of prop.names inside the function that imple­
ments ListElement.

Before we map each component of our array within ReactDOM.render as in the
examples above, the ListElement function gives us exactly one logical place to
set attributes. Here we’ve used ListElement to italicize each element in our array
and give them ids, but these functions can also be used for any transformation or
calculation on each element to be rendered.

7.4	 DEVELOPING WITH PARCEL

Putting all of the source for an application in one HTML file is a bad practice, but
we’ve already seen the race conditions that can arise when we load JavaScript in a

74 JavaScript for Data Science

page’s header. And what about require statements? The browser will try to load the
required files when those statements run, but who is going to serve them?

The solution is to use a bundler (Figure 7.2) to combine everything into one
big file, and to run a local server to preview our application during development.
However, this solution brings with it another problem: which bundler to choose? As
with front-end frameworks, there are many to choose from, and new ones are being
added almost weekly. Webpack6 is probably the most widely used, but it is rather
complex, so we will use Parcel7, which is younger and therefore not yet bloated (but
give it time).

Initiate a Project with Node Package Manager
If you’ve been coding along, so far we’ve created single HTML and
JavaScript files, and we’ve used the Node command to run JavaScript files
in the terminal, but we have not yet used the Node Package Manager npm.
Before we install Parcel, we can turn the directory which we’ve been cre­
ating our HTML and JavaScript files into a project by typing:
$ npm init -y

To install Parcel, run:

$ npm install parcel-bundler

Once Parcel is installed, we can tell it to run one of our test pages like this:

$ node_modules/.bin/parcel serve -p 4000 src/dynamic/pass-params.html

Server running at http://localhost:4000
+ Built in 128ms.

Quitting Parcel
To leave Parcel use the keyboard interrupt Control-C.

This works because when NPM installs a library in a project’s node_modules
directory, that library may put a runnable script in node_modules/.bin (note that
it’s .bin with a leading ., not bin). When we ask Parcel to serve an application, it:

•	 looks in the named file to find JavaScript,
•	 looks recursively at what that file loads,
•	 copies some files into a directory called ./dist (which stands for “distribution”),

and
•	 serves the application out of there.

Parcel also caches things in ./.cache so that it doesn’t need to do redundant
work; both directories are normally added to .gitignore. To learn more about Par­
cel, see this short tutorial8.

6https://webpack.js.org/
7https://parceljs.org/
8https://medium.com/codingthesmartway-com-blog/getting-started-with-parcel-197eb85a2c8c

https://medium.com
https://parceljs.org
https://webpack.js.org

75 Dynamic Pages

project_dir

node_modules/

dist/index.html

application.js
... library.js

...

copies

refers to

copied to

served from

Figure 7.2: What Goes Where with Parcel

It’s very common to put tasks like “run my application” into NPM’s
package.json file, just as older programmers would put frequently-used com­
mands into a project’s Makefile. Look for the section in package.json whose key
is "scripts" and add this:

"scripts": {
"dev": "parcel serve -p 4000",
...

},

We can now use npm run dev -- src/dynamic/pass-params.html, since
everything after -- is passed to the script being run. This doesn’t just save us typing;
it also gives other developers a record of how to use the project. Unfortunately, there
is no standard way to add comments to a JSON file. . .

Whoops
Note: if we accidentally specify the name of a directory like src/dynamic
instead of the name of an HTML file, Parcel prints an error on the console
saying “no entries found”. This happens because it is trying to read the
directory itself as a file.

7.5 MULTIPLE FILES

Now that we can bundle things up, let’s move our JSX into app.js and load that in
the head of the page:

<!DOCTYPE html>
<html>
<head>

<meta charset="utf-8">

<title>Hello Separate</title>

<script src="https://fb.me/react-15.0.1.js"></script>

76 JavaScript for Data Science

<script src="https://fb.me/react-dom-15.0.1.js"></script>
<script src="https://unpkg.com/babel-standalone@6/babel.js"></script>
<script src="app.js" type="text/babel"></script>

</head>
<body>

<h1>Hello Separate</h1>

<div id="app"></div>

</body>
</html>

For now, the JavaScript in app.js is:

ReactDOM.render(
<p>Rendered by React</p>,
document.getElementById("app")

)

When we load this page we get the h1 title but not the paragraph. The browser
console displays the message:

Error: _registerComponent(...): Target container is not a DOM element.

This is the same race condition that has bitten us before. After sighing in frus­
tration and making another cup of tea, we decide that to keep things simple we will
load the script in the body of the page:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Hello Bottom</title>

</head>
<body>

<h1>Hello Bottom</h1>

<div id="app"></div>

<script src="./app.js" type="text/babel"></script>

</body>
</html>

Installing React and ReactDOM
Now that we have made a project folder using npm init and have created
a project.json file, we can install our first modules:
$ npm install react
$ npm install reactDOM

In general, uses of the function require indicate that we need to install
that library to access the module’s functions.

More importantly, we will rewrite app.js so that it loads the libraries it needs,
because there’s no guarantee that libraries loaded in head will be available when
app.js runs:

Dynamic Pages 77

const React = require('react')
const ReactDOM = require('react-dom')

ReactDOM.render(
<p>Rendered by React</p>,
document.getElementById('app')

)

We don’t have to shut down the server and restart it every time we make changes
like this, because Parcel watches for changes in files and relaunches itself as needed.
Each time it does so, it looks at the libraries app.js loads and rebundles what it
needs: right now, for example, dist/app.ef6b320b.js is 19930 lines long.

A more modern option than loading in the bottom is to add the async attribute to
the script in the head of the page, which tells the browser not to do anything with the
JavaScript until the page has finished building:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Hello Parcel</title>
<script src="./app.js" type="text/babel" async></script>

</head>
<body>
<div id="app"></div>

</body>
</html>

7.6 EXERCISES

THOSE DAMN CURLY BRACES

Our list-building example includes this line of code:

{allNames.map((name) => {name})},

Why are the curly braces immediately inside the element necessary? What
happens if you take them out?

REAL DATA

1. Create a file called programmers.js that defines a list of JSON objects called
programmers with firstName and lastName fields for our programmers. (You
can search the Internet to find their names.)

2. Load that file in your page like any other JavaScript file.
3. Delete the list allNames from the application and modify it to use data from the

list programmers instead.

Loading constant data like this is a common practice during testing.

78 JavaScript for Data Science

ORDERING

What happens if you change the order in which the JavaScript files are loaded in
your web page? For example, what happens if you load app.js before you load
ListElement.js?

MULTIPLE TARGETS

What happens if your HTML page contains two div elements with id="app"?

CREATING A COMPONENT FOR NAMES

Create a new React component that renders a name, and modify the example to use
it instead of always displaying names in elements.

STRIPING

Suppose we want to render every second list element in italics. (This would be a hor­
rible design, but once we start creating tables, we might want to highlight alternate
rows in different background colors to make it easier to read.) Modify the application
so that even-numbered list elements are {name} and odd-numbered list
elements are {name}. (Hint: use the fact that a map callback
can have two parameters instead of one.)

KEY POINTS

•	 Older dynamic web sites generated pages on the server.
•	 Newer dynamic web sites generate pages in the client.
•	 React is a JavaScript library for client-side page generation that represents HTML

elements as function calls.
•	 React replaces page elements with dynamically-generated content in memory (not

on disk).
•	 React functions can be customized with elements.
•	 JSX translates HTML into React function calls so that HTML and JavaScript can

be mixed freely.
•	 Use Babel to translate JSX into JavaScript in the browser.
•	 Define new React components with a pseudo-HTML element and a corresponding

function.
•	 Attributes to pseudo-HTML are passed to the JavaScript function as a props

object.

8 Visualizing Data

Tables and lists are great, but visualizations are often more effective—if they’re well
designed and your audience is sighted, that is. There are even more ways to visualize
data in the browser than there are front-end toolkits for JavaScript. We have chosen
to use Vega-Lite1, which is a declarative framework: as a user, you specify the data
and settings, and let the library take care of everything else. It doesn’t do everything,
but it does common things well and easily, and it interacts nicely with React.

8.1 VEGA-LITE

Let’s start by creating a skeleton web page to hold our visualization. For now, we
will load Vega, Vega-Lite, and Vega-Embed from the web; we’ll worry about local
installation later. We will create a div to be filled in by the visualization—we don’t
have to give it the ID vis, but it’s common to do so—and we will leave space for the
script. Our skeleton looks like this (with lines broken for the benefit of the printed
version):

<!DOCTYPE html>
<html>
<head>
<title>Embedding Vega-Lite</title>
<script src="https://cdn.jsdelivr.net/npm/vega@5"></script>
<script src="https://cdn.jsdelivr.net/npm/vega-lite@3"></script>
<script src="https://cdn.jsdelivr.net/npm/vega-embed@4"></script>

</head>
<body>

<div id="vis"></div>

<script type="text/javascript">
</script>

</body>
</html>

We can now start filling in the script with the beginning of a visualization specifi­
cation. This is a blob of JSON with certain required fields:

•	 $schema identifies the version of the spec being used (as a URL).
•	 description is a comment to remind us what we thought we were doing when

we created this.
•	 data is the actual data.

1http://vega.github.io/

79

http://vega.github.io

80 JavaScript for Data Science

...rest of page as before...
<script type="text/javascript">
let spec = {

"$schema": "https://vega.github.io/schema/vega-lite/v2.0.json",

"description": "Create data array but do not display anything.",

"data": {

"values": [

{"a": "A", "b": 28},

{"a": "B", "b": 55},

{"a": "C", "b": 43},

{"a": "D", "b": 91},

{"a": "E", "b": 81},

{"a": "F", "b": 53},

{"a": "G", "b": 19},

{"a": "H", "b": 87},

{"a": "I", "b": 52}

]
}

}
</script>

...rest of page as before...

In this case, we represent a two-dimensional data table as objects with explicit
indices "a" and "b". We have to do this because JSON (like JavaScript) doesn’t have
a native representation of two-dimensional arrays with row and column headers.

Once we have created our spec, we can call vegaEmbed with the ID of the element
that will hold the visualization, the spec, and some options (which for now we will
leave empty):

let spec = {

"$schema": "https://vega.github.io/schema/vega-lite/v2.0.json",

"description": "Create data array but do not display anything.",

"data": {

"values": [
// ...as above...

]
}

}

vegaEmbed("#vis", spec, {})

When we open the page, though, nothing appears, because we haven’t told Vega-
Lite how to display the data. To do that, we need to add two more fields to the spec:

• mark specifies the visual element used to show the data
• encoding tells Vega how to map values to marks

Here’s our updated spec:

let spec = {

"$schema": "https://vega.github.io/schema/vega-lite/v2.0.json",

"description": "Add mark and encoding for data.",

"data": {

81 Visualizing Data

Figure 8.1: Mark and Encoding

"values": [
// ...as above...

]

},

"mark": "bar",

"encoding": {

"x": {"field": "a", "type": "ordinal"},

"y": {"field": "b", "type": "quantitative"}

}

}

vegaEmbed("#vis", spec, {})

When we open the page now, we see a bar chart, and feel very proud of ourselves
(Figure 8.1).

There are also some poorly-styled links for various controls that we’re not going
to use. We can fill in the options argument to vegaEmbed to turn those off:

let spec = {

"$schema": "https://vega.github.io/schema/vega-lite/v2.0.json",

"description": "Disable control links.",

"data": {

// ...as before...

}

}

let options = {

"actions": {

"export": false,

"source": false,

"editor": false

}

}

vegaEmbed("#vis", spec, options)

We now have the visualization we wanted (Figure 8.2).

82 JavaScript for Data Science

Figure 8.2: Without Controls

Vega-Lite has a lot of options: for example, we can use points and average the
Y values. (We will change the X data so that values aren’t distinct in order to show
this off, because otherwise averaging doesn’t do much.) In our revised spec, x is now
"nominal" instead of "ordinal" and y has an extra property "aggregate", which
is set to "average" (but can be used to specify other aggregation functions):

let spec = {

"$schema": "https://vega.github.io/schema/vega-lite/v2.0.json",

"description": "Disable control links.",

"data": {

"values": [

{"a": "P", "b": 19},

{"a": "P", "b": 28},

{"a": "P", "b": 91},

{"a": "Q", "b": 55},

{"a": "Q", "b": 81},

{"a": "Q", "b": 87},

{"a": "R", "b": 43},

{"a": "R", "b": 52},

{"a": "R", "b": 53}

]

},

"mark": "point",

"encoding": {

"x": {"field": "a", "type": "nominal"},

"y": {"field": "b", "type": "quantitative", "aggregate": "average"}

}

}

let options = {

...disable controls as before...

}

vegaEmbed("#vis", spec, options)

Figure 8.3 shows the result.

83 Visualizing Data

Figure 8.3: Aggregating and Using Points

8.2 LOCAL INSTALLATION

Loading Vega from a Content Delivery Network (CDN) reduces the load on our
server, but prevents offline development. Since we want to be able to work when
we’re disconnected, let’s load from local files.

Step 1 is to slim down our HTML file so that it only loads our application:

<!DOCTYPE html>
<html>
<head>

<title>Load Vega from a File</title>

<meta charset="utf-8">

<script src="app.js" async></script>

</head>
<body>
<div id="vis"></div>

</body>
</html>

In step 2, we npm install vega vega-lite vega-embed and require(’vega­
embed’) in app.js:

const vegaEmbed = require('vega-embed')

const spec = {
// ...as before...

}

const options = {
// ...as before...

}

vegaEmbed("#vis", spec, options)

We launch this with Parcel via our saved npm run command:

$ npm run dev -- src/vis/react-01/index.html

84 JavaScript for Data Science

Our hearts break when we open http://localhost:4000 in our browser and
nothing appears. Looking in the browser console, we see a message telling us that
vegaEmbed is not a function.

What we have tripped over is a leftover from JavaScript’s evolution. The old
method of getting libraries is require, and that’s still what Node supports as of
Version 10.9.0. The new standard is import, which allows a module to define a de­
fault value so that import ’something’ gets a function, a class, or whatever. This
is really handy, but require doesn’t work that way.

We can either add the --experimental-modules flag when using Node on the
command line, or rename our files with a .mjs extension, both of which are an­
noying. Alternatively, we can get the thing we want by accessing .default during
import, or by referring to vegaEmbed.default when we call it. These choices are
also annoying, but after a bit of fiddling and cursing, we decide to make the fix as the
library is loaded:

const vegaEmbed = require('vega-embed').default

// ...as before...

The third option is to use import where we can and fix the require statements
in the server-side code when Node is upgraded. We can call the thing we import
anything we want, but we will stick to vegaEmbed for consistency with previous
examples:

import vegaEmbed from 'vega-embed'

// ...as before...

If we do this, the bundled file is 74.5K lines of JavaScript, but at least it’s all in one
place for distribution.

8.3 EXERCISES

BINNED SCATTERPLOTS

Vega-Lite can create binned scatterplots2 in which the sizes of markers indicate how
many values were put in each bin. Modify the aggregating scatterplot shown above
so that values are binned in this way.

GROUPED BAR CHARTS

Vega-Lite can display grouped bar charts3 as well as simple ones. Find or create a
simple dataset and construct a grouped bar chart. How impressed will your supervi­
sor, your committee, or a future employee be by your chosen color scheme?

2https://vega.github.io/vega-lite/examples/circle_binned.html
3https://vega.github.io/vega-lite/examples/bar_grouped.html

https://vega.github.io
https://vega.github.io

85 Visualizing Data

LIMITS OF DECLARATIVE PROGRAMMING

Look at Vega-Lite’s example gallery4 and identify one kind of plot or transformation
you’ve used or seen that isn’t included there. Do you think this is because they just
haven’t gotten around to it yet, or is there something about that plot or transformation
that doesn’t lend itself to Vega-Lite’s declarative model?

WORKING WITH ARRAYS

Vega-Lite is built on top of a visualization toolkit called D35, which includes a li­
brary for manipulating arrays6. Write a small application that generates 1000 random
values using Math.random and reports the mean, standard deviation, and quartiles.
(You may also want to create a histogram showing the distribution of values.)

KEY POINTS

•	 Vega-Lite is a simple way to build common visualizations.
•	 Vega-Lite is declarative: the user creates a data structure describing what they

want, and the library creates the visualization.
•	 A Vega-Lite specification contains a schema identifier, a description, data, marks,

and encodings.
•	 The overall layout of a Vega-Lite visualization can be controlled by setting op­

tions.
•	 Some applications will use require for server-side code and import for client-

side code.

4https://vega.github.io/vega-lite/examples/
5https://d3js.org/
6https://github.com/d3/d3-array

https://github.com
https://d3js.org
https://vega.github.io

http://taylorandfrancis.com

9 Promises

By now we have got used to providing callback functions as arguments to other
functions. Callbacks quickly become complicated because of:

•	 Nesting: a delayed calculation may need the result of a delayed calculation that
needs. . .

•	 Error handling: who notices and takes care of errors? (This is often a problem in
real life too.)

For example, suppose we want to turn a set of CSV files into HTML pages. The
inputs to our function are the name of a directory that contains one or more CSV files
and the name of an output directory; the desired results are that the output directory
is created if it doesn’t already exist, that one HTML file is created for each CSV file,
that any HTML files in the directory that don’t correspond to CSV files are removed,
and that an index page is created with links to all the pages.

We can do this with synchronous operations, but that’s not the JavaScript way (by
which we mean that doing it that way won’t introduce you to tools we’re going to
need later). We can also try doing it with callbacks, but:

•	 we can’t create the output directory until the existing one has been emptied;
•	 can’t generate the HTML pages until the output directory has been re-created; and
•	 we can’t generate the index page until the CSV files have been processed.

Instead of a tangled nest of callbacks, it’s better to use promises, and then to use
async and await to make things even easier. JavaScript offers three mechanisms
because its developers have invented better ways to do things as the language has
evolved, but the simple high-level ideas often don’t make sense unless you under­
stand how they work. (This too is often a problem in real life.)

9.1 THE EXECUTION QUEUE

In order for any of what follows to make sense, it’s vital to understand JavaScript’s
event loop, a full explanation of which can be found here1. Most functions execute
in order:

[1000, 1500, 500].forEach(t => {
console.log(t)

})

1https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

87

https://nodejs.org

88 JavaScript for Data Science

1000

1500

500

However, a handful of built-in functions delay execution: instead of running right
away, they add a callback to a list that the JavaScript interpreter uses to keep track of
things that want to be run. When one task finishes, the interpreter takes the next one
from this queue and runs it.
setTimeout is one of the most widely used functions of this kind. Here it is in

operation:

[1000, 1500, 500].forEach(t => {
console.log(�about to setTimeout for ${t}�)
setTimeout(() => {console.log(�inside handler for ${t}�)}, t)

})

about to setTimeout for 1000

about to setTimeout for 1500

about to setTimeout for 500

inside handler for 500

inside handler for 1000

inside handler for 1500

That’s not surprising: if we ask JavaScript to delay execution, execution is de­
layed. What may be surprising is that setting a timeout of zero also defers execution:

const values = [1000, 1500, 500]
console.log('starting...')
values.forEach(t => {
console.log(�about to setTimeout for ${t}�)
setTimeout(() => {console.log(�inside handler for ${t}�)}, 0)

})
console.log('...finishing')

starting...

about to setTimeout for 1000

about to setTimeout for

...finishing

1500

about to setTimeout for 500

inside handler for 1000

inside handler for 1500

inside handler for 500

Figure 9.1 shows what the run queue looks like just before the program
prints ...finishing. We can use setTimeout to build a generic non-blocking
function:

const nonBlocking = (callback) => {
setTimeout(callback, 0)

}

['a', 'b', 'c'].forEach(val => {

Promises 89

Pending

const values = [1000, 1500, 500]
 console.log('starting...')
 values.forEach(t => {
 console.log(`about to setTimeout for ${t}`)
 setTimeout(() => {console.log(`inside handler for ${t}`)}, 0)
 })
 console.log('...finishing')

Active

t 500

console.log(`inside handler for ${t}`)

t 500

console.log(`inside handler for ${t}`)

t 1500

console.log(`inside handler for ${t}`)

t 1000

Figure 9.1: Run Queue

console.log(�about to do nonBlocking for ${val}�)
nonBlocking(() => console.log(�inside callback for ${val}�))

})

about to do nonBlocking for a
about to do nonBlocking for b
about to do nonBlocking for c
inside callback for a
inside callback for b
inside callback for c

Why bother doing this? Because we may want to give something else a chance
to run. In particular, file I/O and anything involving a network request are incredibly
slow from a computer’s point of view. If a single CPU cycle was one second long2,
then getting data from RAM would take several minutes, getting it from a solid-state
disk would take six to eight days, and getting it over the network is the equivalent
of eight years. Rather than wasting that time, JavaScript is designed to let us (or our
browser) switch tasks and do something else.

Using a timeout of zero is a clever trick, but Node provides another function called
setImmediate to do this for us. (There is also process.nextTick, which doesn’t
do quite the same thing. You should probably not use it.)

['a', 'b', 'c'].forEach(val => {
console.log(�about to do setImmediate for ${val}�)
setImmediate(() => console.log(�inside immediate handler for ${val}�))

})

about to do setImmediate for a
about to do setImmediate for b
about to do setImmediate for c
inside immediate handler for a
inside immediate handler for b
inside immediate handler for c

2http://exple.tive.org/blarg/2018/08/15/time-dilation/

http://exple.tive.org

90	 JavaScript for Data Science

9.2	 PROMISES

Recent versions of JavaScript encourage programmers to use promises to manage
delayed actions. For example, if we want to find the size of a file, we can write this:

const fs = require('fs-extra')
fs.stat('moby-dick.txt').then((stats) => console.log(stats.size))

1276201

fs-extra.stat will eventually produce some statistics about the file, but this
will take a while, so fs-extra.stat returns an object of the class Promise right
away. Promise has a method then that takes a callback as an argument and stores
it in the promise object. When the stat call completes, the remembered callback is
called, and passed yet another object with statistics about the file (including its size).

To understand this a little better, let’s create our own promise to fetch a file from
the web. (We have broken the URL over two lines using string concatenation so that
it will print nicely.)

const fetch = require('node-fetch')

url = 'https://api.nasa.gov/neo/rest/v1/feed' +
'?api_key=DEMO_KEY&start_date=2018-08-20'

const prom = new Promise((resolve, reject) => {
fetch(url)
.then((response) => {
if (response.status === 200) {
resolve('fetched page successfully')

}
})

}).then((message) => console.log(message))

This code constructs a new Promise object. The constructor takes one argument;
this must be a callback function of two arguments, which by convention are called
resolve and reject. Inside the body of the callback, we call resolve to return
a value if and when everything worked as planned. That value is then passed to the
then method of the Promise.

This may seem a roundabout way of doing things, but it solves several problems
at once. The first and most important is error handling: if something goes wrong
inside the callback passed to Promise’s constructor, we can call reject instead
of resolve. Just as then handles whatever we pass to resolve, Promise defines
a method called catch to handle whatever is passed to reject. We can therefore
build a slightly more robust version of our data fetcher that will report something
sensible if we mis-type a month as 80:

const fetch = require('node-fetch')

url =	 'https://api.nasa.gov/neo/rest/v1/feed' +
'?api_key=DEMO_KEY&start_date=2018-80-20'

new Promise((resolve, reject) => {

Promises	 91

initial action

success action

error action

Promise

then

if (...) resolve(...)

else (...) reject(...)

fetch

Figure 9.2: Promises as Objects (after creation)

fetch(url)
.then((response) => {
if (response.status === 200) {
resolve('fetched page successfully')

}
else {
reject(Error(�got HTTP status code ${response.status}�))

}
})

}).then((message) => console.log(message))
.catch((error) => console.log(error.message))

got HTTP status code 400

Note that we didn’t assign our Promise object to a variable in the example above. We
can create promises on the fly if we need them only to define behavior on successful
completion/exception and won’t need to refer to them again later.

What makes this all work is that a promise is an object. Figure 9.2 shows what’s
in memory just after this promise has been created. There are a lot of arrows in this
diagram, but they all serve a purpose:

•	 The promise has three fields: the initial action (which is the callback passed to the
constructor), the action to be taken if everything succeeds, and the action to be
taken if there’s an error.

•	 The success and error actions are empty, because the initial action hasn’t executed
yet.

Once the promise is created, the program calls its then and catch methods in
that order, giving each a callback. This happens before the callback passed to the
constructor (i.e., the initial action) is executed, and leaves the promise in the state
shown in Figure 9.3:

Calling then and catch assigns callbacks to the success action and error action
members of the promise object. Those methods are then passed into the initial action
callback as resolve and reject, i.e., if resolve is called because the page was
fetched successfully, what’s actually called is the promise’s success action, which is

92 JavaScript for Data Science

initial action

success action

error action

console.log(message)

console.log(error.message)

Promise

then

if (...) resolve(...)

else (...) reject(...)

fetch

Figure 9.3: Promises as Objects (after then and catch)

the callback that was given to then. If reject is called, on the other hand, it triggers
execution of the error action, which is the callback that was passed to catch.

Yes, this is complicated—so complicated that another layer (which we will look at
in Section 9.4) has been added to JavaScript to hide these details. Without this com­
plexity, though, it’s extremely difficult to handle errors from delayed computations.
If we run this using JavaScript’s try {...} catch {...} syntax for handling ex­
ceptions:

const fetch = require('node-fetch')

url =	 'https://api.nasa.gov/neo/rest/v1/feed' +
'?api_key=DEMO_KEY&start_date=2018-80-20' // illegal date

try {
fetch(url)

}
catch (err) {
console.log(err)

}

then the error message won’t appear because the function fetch is asynchronous,
which means that code executes in this order:

1. inside try, ask the computer to execute fetch(url) at some point in the future
2. since asking this doesn’t cause an exception, skip the catch
3. then run fetch(url), which fails without anything in place to catch the excep­

tion because the try...catch has already finished so console.log never runs
and the error message doesn’t appear.

There are two passes of execution in this block: The first is the try...catch
event loop, and the second is fetch. JavaScript rips the asynchronous code right out

Promises 93

try {

fetch(url)

} catch(err) {

handle(err)

}

No Error

try {

fetch(url)

} catch(err) {

handle(err)

}

Expectation
with Error

try {

fetch(url)

} catch(err) {

handle(err)

}

Reality
with Error

execute fetch

add to
run queue

no handler
for error

...other code...

...later...

Figure 9.4: When Try...Catch Fails

of the execution context! There’s no error, because fetch hasn’t yet had the chance
to run.

Going back to the fs-extra.stat example above, what if we want to process
multiple files, for example to calculate their total size? We could write a loop:

const fs = require('fs-extra')

let total_size = 0
const files = ['jane-eyre.txt', 'moby-dick.txt',

'life-of-frederick-douglass.txt']
for (let fileName of files) {
fs.stat(fileName).then((stats) => {
total_size += stats.size

})
}
console.log(total_size)

but this doesn’t work: the stat in each iteration is executed asynchronously, so the
loop finishes and the script prints a total size of zero before any of the promised code
has run.

Plan B is to chain the promises together to ensure that each executes only after
the last has resolved:

const fs = require('fs-extra')

let total_size = 0
new Promise((resolve, reject) => {
fs.stat('jane-eyre.txt').then((jeStats) => {
fs.stat('moby-dick.txt').then((mdStats) => {
fs.stat('life-of-frederick-douglass.txt').then((fdStats) => {
resolve(jeStats.size + mdStats.size + fdStats.size)

94 JavaScript for Data Science

})
})

})
}).then((total) => console.log(total))

but this obviously doesn’t handle an arbitrary number of files, since we have to write
one level of nesting for each file. It’s also potentially inefficient, since we could be
waiting for one promise to complete while other promises further down are ready to
be processed.

The answer is Promise.all, which returns an array of results from completed
promises after all of them have resolved. The order of results corresponds to the order
of the promises in the input array, which makes processing straightforward:

const fs = require('fs-extra')

let total_size = 0

const files = ['jane-eyre.txt', 'moby-dick.txt',

'life-of-frederick-douglass.txt']
Promise.all(files.map(f => fs.stat(f))).
then(stats => stats.reduce((total, s) => {return total + s.size}, 0)).
then(console.log)

2594901

In future, we might also find an opportunity to use Promise.race, which takes
an array of promises and returns the result of the first one to complete.

9.3 USING PROMISES

Promises don’t really make sense until we start to use them, so let’s try counting the
number of lines in a set of files that are larger than a specified threshold. This is a
slightly complex example but we will go through and build it up step-by-step.

Before we begin, we will want the name of the directory to search for files. We
could put this in our code, but it’s a lot more convenient if we allow users to provide
it as a command-line argument when they run our script. To aid this, we’ll use the
property within Node called process.argv which is an array containing all the
command line arguments passed to the script.

If we put this line in a file called echo.js:

console.log('arguments are:', process.argv)

and run it like this:

$ node src/promises/echo.js first second third

the output is:

Promises 95

arguments are: ['/usr/local/bin/node',
'/Users/stj/js4ds/src/promises/echo.js',
'first',
'second',
'third']

The full path to Node is the first argument, the name of our script is the second, and
all of the extra arguments provided by the users follow that. If we want the first of
those, we therefore need process.argv[2].

The first step in counting lines is now to find the input files:

const fs = require('fs-extra')
const glob = require('glob-promise')

const srcDir = process.argv[2]

glob(�${srcDir}/**/*.txt�)
.then(files => console.log('glob', files))
.catch(error => console.error(error))

If we go into the directory src/promises and run:

$ node step-01.js .

to run the program with the current working directory . as its only argument, then
the output is:

glob ['./common-sense.txt',
'./jane-eyre.txt',
'./life-of-frederick-douglass.txt',
'./moby-dick.txt',
'./sense-and-sensibility.txt',
'./time-machine.txt']

Step 2 is to get the status of each file. This approach doesn’t work because
fs.stat is delayed:

// ...imports and arguments as before...

glob(�${srcDir}/**/*.txt�)
.then(files => files.map(f => fs.stat(f)))
.then(files => console.log('glob + files.map/stat', files))
.catch(error => console.error(error))

glob + files.map/stat [Promise { <pending> },
Promise { <pending> },
Promise { <pending> },
Promise { <pending> },
Promise { <pending> },
Promise { <pending> }]

Step 3 is to use Promise.all to wait for all these promises to resolve:

96 JavaScript for Data Science

// ...imports and arguments as before...

glob(�${srcDir}/**/*.txt�)
.then(files => Promise.all(files.map(f => fs.stat(f))))
.then(files => console.log('glob + Promise.all(...)', files))
.catch(error => console.error(error))

glob + Promise.all(...) [Stats {
dev: 16777220,
mode: 33188,
...more information... },
...five more Stats objects...

]

In step 4, we remember that we need to keep track of the names of the files we are
looking at, so we need to write our own function that returns an object with two keys
(one for the filename, and one for the stats). As described in Chapter 6, the notation
{a, b} produces an object {"a": a, "b": b}:

// ...imports and arguments as before...

const statPair = (filename) => {
return new Promise((resolve, reject) => {
fs.stat(filename)

.then(stats => resolve({filename, stats}))

.catch(error => reject(error))

})
}

glob(�${srcDir}/**/*.txt�)
.then(files => Promise.all(files.map(f => statPair(f))))
.then(files => console.log('glob + Promise.all(...)', files))
.catch(error => console.error(error))

glob + Promise.all(...) [{ filename: './common-sense.txt',
stats:
Stats {

dev: 16777220,

mode: 33188,

...more information... }

},
...five more (filename, Stats) pairs...

]

Step 5 is to make sure that we’re only working with files more than 100,000
characters long:

// ...imports and arguments as before...

glob(�${srcDir}/**/*.txt�)
.then(files => Promise.all(files.map(f => statPair(f))))
.then(files => files.filter(pair => pair.stats.size > 100000))
.then(files => Promise.all(files.map(f => fs.readFile(f.filename, 'utf8'))))
.then(contents => console.log('...readFile', contents.map(c => c.length)))
.catch(error => console.error(error))

Promises	 97

...readFile [148134, 1070331, 248369, 1276201, 706124, 204492]

In step 6, we split each file’s content into lines and count:

// ...imports and arguments as before...

const countLines = (text) => {
return text.split('\n').length

}

glob(�${srcDir}/**/*.txt�)
.then(files => Promise.all(files.map(f => statPair(f))))
.then(files => files.filter(pair => pair.stats.size > 100000))
.then(files => Promise.all(files.map(f => fs.readFile(f.filename, 'utf8'))))
.then(contents => contents.map(c => countLines(c)))
.then(lengths => console.log('lengths', lengths))
.catch(error => console.error(error))

lengths [2654, 21063, 4105, 22334, 13028, 3584]

There’s a lot going on in the example above but the important points are:

•	 Promises always return another Promise object.
•	 This allows us to chain multiple then calls.
•	 This chain is formed of processes that will each wait to run until their predecessor

has completed.
•	 A single catch method works to handle exceptions raised by any of the previous

steps.

9.4 ASYNC AND AWAIT

Programmers are never content to leave well enough alone, so the latest version of
JavaScript offers yet another tool for managing asynchronous computation. As we
saw above, the result of Promise.then is another promise, which allows us to create
long chains of .then(...) calls. It works, but it isn’t the most readable of notations
and has been known to create a feeling of being trapped.

We can avoid this using two new keywords, async and await. async tells
JavaScript that a function is asynchronous, i.e., that it might want to wait for some­
thing to complete. Inside an asynchronous function, await tells JavaScript to act as
if it had waited for something to finish. We use the two together like this:

const fs = require('fs-extra')

const statPairAsync = async (filename) => {
const stats = await fs.stat(filename)
return {filename, stats}

}

statPairAsync('moby-dick.txt').then(
(white_whale) => console.log(white_whale.stats))

98 JavaScript for Data Science

An async function still returns a Promise, but we can chain those promises to­
gether with other async functions using await, which collects the result returned
by a resolved promise. As before, we can use .catch to handle any errors thrown.

Let’s use these to convert the complete example from the previous section:

const fs = require('fs-extra')
const glob = require('glob-promise')

const statPairAsync = async (filename) => {
const stats = await fs.stat(filename)
return {filename, stats}

}

const countLines = (text) => {
return text.split('\n').length

}

const processFiles = async (globpath) => {
const filenames = await glob(globpath)
const pairs = await Promise.all(
filenames.map(f => statPairAsync(f)))

const filtered = pairs.filter(

pair => pair.stats.size > 100000)

const contents = await Promise.all(

filtered.map(f => fs.readFile(f.filename, 'utf8')))

const lengths = contents.map(c => countLines(c))

console.log(lengths)

}

const srcDir = process.argv[2]

processFiles(�${srcDir}/**/*.txt�)
.catch(e => console.log(e.message))

Using async and await lets us avoid long then chains; unless and until
JavaScript allows us to define operators like R’s %>% pipe operator, they are probably
the easiest way to write readable code. Note, though, that we can only use await in­
side async functions: JavaScript will report a syntax error if we use them elsewhere.
In particular, we cannot use them interactively unless we wrap whatever we want to
do in a wee function.

9.5 EXERCISES

WHAT’S GOING ON?

This code runs fine:

[500, 1000].forEach(t => {
console.log(�about to setTimeout for ${t}�)
setTimeout(() => {console.log(�inside timer handler for ${t}�)}, 0)

})

but this code fails:

Promises	 99

console.log('starting...')
[500, 1000].forEach(t => {
console.log(�about to setTimeout for ${t}�)
setTimeout(() => {console.log(�inside timer handler for ${t}�)}, 0)

})

Why?

A STAY OF EXECUTION

Insert a call to console.log in the appropriate place in the code block below so that
the output reads

Waiting...

This is a sharp Medicine, but it is a Physician for all diseases and miseries.

Waiting...

Finished.

const holdingMessage = () => {
console.log('Waiting...')

}

const swingAxe = () => {
setTimeout(() => {

holdingMessage()

console.log('Finished.')

}, 100)
holdingMessage()

}

swingAxe()

A SYNCHRONOUS OR ASYNCHRONOUS?

Which of these functions would you expect to be asynchronous? How can you tell?
Does it matter? And, if so, what is a good strategy to find out for sure if a function is
asynchronous?

1.	 findNearestTown(coords): given a set of coordinates (coords) in Brazil,
looks up and returns the name of the nearest settlement with an estimated pop­
ulation greater than 5000. The function throws an error if coords fall outside
Brazil.

2.	 calculateSphereVolume(r): calculates and returns the volume of a sphere
with radius r.

3.	 calculateRoute(A,B): returns all possible routes by air between airports A and
B, including direct routes and those with no more than 2 transfers.

HANDLING EXCEPTIONS

What (if any) output would you expect to see in the console when the code below is
executed?

100 JavaScript for Data Science

const checkForBlanks = (inputValue) => {
return new Promise((resolve, reject) => {
if (inputValue === '') {
reject(Error("Blank values are not allowed"))

} else {
resolve(inputValue)

}
})

}

new Promise((resolve, reject) => {
setTimeout(() => {
reject(Error('Timed out!'))

}, 1000)

resolve('')

}).then(
output => checkForBlanks(output), error => console.log(error.message)).then(
checkedOutput => console.log(checkedOutput)).catch(
error => console.log(error.message))

1. Timed out!
2. blank output
3. Blank values are not allowed
4. a new Promise object

EMPTY PROMISES

Fill in the blanks (___) in the code block below so that the function returns Array[7,
8, 2, 6, 5].

const makePromise = (someInteger) => {
return ___ Promise((resolve, reject) => {
setTimeout(___(someInteger), someInteger * 1000)

})
}
Promise.___([makePromise(7), makePromise(___), makePromise(2),

makePromise(6), makePromise(5)]).then(

numbers => ___(numbers))

Now adapt the function so that it returns only 2. (Hint: you can achieve this by
changing only one of the blank fields.)

ASYNC, THEREFORE I AM

Using async and await, convert the completed function above into an asynchronous
function with the same behavior and output. Do you find your solution easier to read
and follow than the original version? Do you think that that is only because you
wrote this version?

Promises	 101

KEY POINTS

•	 JavaScript keeps an execution queue for delayed computations.
•	 Use promises to manage delayed computation instead of raw callbacks.
•	 Use a callback with two arguments to handle successful completion (resolve) and

unsuccessful completion (reject) of a promise.
•	 Use then to express the next step after successful completion and catch to handle

errors.
•	 Use Promise.all to wait for all promises in a list to complete and
Promise.race to wait for the first promise in a set to complete.

•	 Use await to wait for the result of a computation.
•	 Mark functions that can be waited on with async.

http://taylorandfrancis.com

10 Interactive Sites

Browsers allow us to define event handlers to specify what to do in response to an
externally-triggered action, such as a page loading or a user pressing a button. These
event handlers are just callback functions that are (usually) given an event object
containing information about what happened, and while we can write them in pure
JavaScript, they’re even easier to build in React.

Let’s switch back to single-page examples for a moment to show how we pass a
callback function as a specifically-named property of the thing whose behavior we
are specifying. (Don’t forget to load the required libraries in the HTML header, like
we did in Chapter 7.)

<body>
<div id="app"></div>
<script type="text/babel">
let counter = 0
const sayHello = (event) => {
counter += 1
console.log(�Hello, button: ${counter}�)

}

ReactDOM.render(

<button onClick={sayHello}>click this</button>,

document.getElementById("app")

)

</script>

</body>

As its name suggests, onClick is the event handler called when a button is
clicked. Here, we are telling React to call sayHello, which adds one to the event
object counter and then prints its value along with a greeting message.

Global variables and functions are a poor way to structure code. It’s far better to
define the component as a class and then use a method as the event handler:

<body>
<div id="app"></div>
<script type="text/babel">
class Counter extends React.Component {

constructor (props) {
super(props)
this.state = {counter: 0}

}

increment = (event) => {

this.setState({counter: this.state.counter+1})

}

103

104 JavaScript for Data Science

render = () => {

return (

<p>
<button onClick={this.increment}>increment</button>

current: {this.state.counter}

</p>

)

}

}

ReactDOM.render(

<Counter />,

document.getElementById("app")

)
</script>

</body>
</html>

Working from bottom to top, the ReactDOM.render call inserts whatever HTML
is produced by <Counter /> into the element whose ID is "app". In this case,
though, the counter is not a function, but a class with three parts:

1. Its constructor passes the properties provided by the user to React.Component’s
constructor. (There aren’t any properties in this case, but there will be in future
examples, so it’s a good habit to get into.) The constructor then creates a property
called state that holds this component’s state. This property must have this name
so that React knows to watch it for changes.

2. The increment method uses setState (inherited from React.Component) to
change the value of the counter. We must do this rather than creating and modify­
ing this.counter so that React will notice the change in state and re-draw what
it needs to.

3. The render method takes the place of the functions we have been using so far. It
can do anything it wants, but must return some HTML (using JSX). Here, it cre­
ates a button with an event handler and displays the current value of the counter.

React calls each component’s render method each time setState is used to up­
date the component’s state. Behind the scenes, React does some thinking to minimize
how much redrawing takes place: while it may look as though the paragraph, button,
and current count are all being redrawn each time, React will only actually redraw as
little as it can.

10.1 BUT IT DOESN’T WORK

If we try running this little application from the command line with Parcel:

$ npm run dev -- src/interactive/display-counter.html

everything works as planned. But now try taking the code out of the web page and
putting it in its own file:

105 Interactive Sites

<html>
<head>

<meta charset="utf-8">

<title>Counter</title>

<script src="app.js" async></script>

</head>
<body>
<div id="app"></div>

</body>
</html>

import React from 'react'
import ReactDOM from 'react-dom'

class Counter extends React.Component {

constructor (props) {
// ...as before...

}

increment = (event) => {

this.setState({counter: this.state.counter+1})

}

render = () => {
// ...as before...

}
}

ReactDOM.render(
<Counter />,
document.getElementById('app')

)

Let’s try running this:

$ npm run dev -- src/interactive/counter/index.html

> js4ds@0.1.0 dev /Users/stj/js4ds

> parcel serve -p 4000 "src/interactive/counter/index.html"

Server running at http://localhost:4000
!! /Users/stj/js4ds/src/interactive/counter/app.js:11:12: \
Unexpected token (11:12)
9 | }
10 |

> 11 | increment = (event) => {
| ^

12 | this.setState({counter: this.state.counter+1})

13 | }

14 |

It seems that Parcel doesn’t like fat arrow methods. This happens because React
is still using ES6 JavaScript by default, and fat arrow methods weren’t included in

106 JavaScript for Data Science

JavaScript at that point. All right, let’s try using “normal” function-style method
definitions instead:

// ...imports as before...

class Counter extends React.Component {

constructor (props) {
super(props)
this.state = {counter: 0}

}

increment (event) {

this.setState({counter: this.state.counter+1})

}

render () {

return (

<p>

<button onClick={this.increment}>increment</button>

current: {this.state.counter}

</p>
)

}
}

// ...render as before...

Parcel runs this without complaint, but clicking on the button doesn’t change the
display. Despair is once again our friend—our only friend—but we persevere. When
we open the debugging console in the browser, we see the message TypeError:
this is undefined. Section G.3 explains in detail why this happens; for now,
suffice to say that some poor choices were made early in JavaScript’s development
about variable scoping.

At this point it appears that we can compile but not run, or not bundle files
together. But wait—when we used an in-page script, we specified the type as
text/babel and loaded:

https://unpkg.com/babel-standalone@6/babel.js

in the page header along with React. Can Babel save us?
The answer is “yes”, though it takes a fair bit of searching on the web to find this

out (particularly if you don’t know what you’re looking for). The magic is to create
a file in the project’s root directory called .babelrc and add the following lines:

{
"presets": [
"react"

],
"plugins": [
"transform-class-properties"

Interactive Sites 107

]
}

Once we’ve done this, we can use NPM to install babel-preset-react and
babel-plugin-transform-class-properties and then switch back to fat arrow
methods. Voila: everything works.

What’s happening here is that when Babel translates our sparkly modern
JavaScript into old-fashioned JavaScript compatible with all browsers, it reads
.babelrc and obeys that configuration. The settings above tell it to do everything
React needs using the transform-class-properties plugin; in particular, to ac­
cept fat arrow method definitions and bind this correctly. This works, but is a form
of madness: something outside our program determines how that program is inter­
preted, and the commands controlling it go in yet another configuration file. Still, it
is a useful form of madness, so we will press on.

10.2 MODELS AND VIEWS

Well-designed applications separate models (which store data) from views (which
display it) so that each can be tested and modified independently. When we use
React, the models are typically classes, and the views are typically pure functions.

To introduce this architecture, let’s re-implement the counter using:

• App to store the state and provide methods for altering it,
• NumberDisplay to display a number, and
• UpAndDown to provide buttons that increment and decrement that number.

The crucial design feature is that NumberDisplay and UpAndDown don’t know
what they’re displaying or what actions are being taken on their behalf, which makes
them easier to re-use. Of course, no good deed goes unpunished. The price that we
pay for organizing our application into separate components is that now we must
import the dependencies of each component and export the component itself within
each script.

After we’ve done this, our dependencies will be bundled by parcel. So we must
remove the script loading from the HTML header. The whole page is:

<html>
<head>

<meta charset="utf-8">

<title>Up and Down</title>

</head>
<body>

<div id="app"></div>

<script src="app.js"></script>

</body>
</html>

The NumberDisplay class takes a label and a value and puts them in a paragraph
(remember, the label and value will appear in our function as properties of the props
parameter):

108 JavaScript for Data Science

const NumberDisplay = (props) => {
return (<p>{props.label}: {props.value}</p>)

}

Similarly, UpAndDown expects two functions as its up and down properties, and
makes each the event handler for an appropriately-labelled button:

const UpAndDown = (props) => {
return (
<p>

<button onClick={props.up}> [+] </button>

<button onClick={props.down}> [-] </button>

</p>
)

}

Both of these components will use React and ReactDOM when they are rendered
so we must import these. We do this by adding import statements to the beginning of
both components:

import React from "react"
import ReactDOM from "react-dom"

Similarly, our application will need to import the UpAndDown and NumberDisplay
components, so we need to export them after they’ve been defined. This is done by
adding export {<object_name>} to the end of the component script. (We will ex­
plore why the curly braces are necessary in the exercises.) After we’ve done this for
UpAndDown, the complete component script looks like this:

import React from "react"
import ReactDOM from "react-dom"

const UpAndDown = (props) => {
return (
<p>

<button onClick={props.up}> [+] </button>

<button onClick={props.down}> [-] </button>

</p>
)

}

export {UpAndDown}

We are now ready to build the overall application. It creates a state containing
a counter and defines methods to increment or decrement the counter’s value. Its
render method then lays out the buttons and the current state using those elements
(Figure 10.1):

class App extends React.Component {

109 Interactive Sites

div

p

button button

"[+]" "[-]"

p

"counter" {{value}}

DOMObjects

render

increment

decrement

state

...instructions...

...instructions...

...instructions...

counter 0

Figure 10.1: React Objects and the DOM

constructor (props) {

super(props)

this.state = {counter: 0}

}

increment = (event) => {

this.setState({counter: this.state.counter + 1})

}

decrement = (event) => {

this.setState({counter: this.state.counter - 1})

}

render = () => {

return (

<div>

<UpAndDown up={this.increment} down={this.decrement} />

<NumberDisplay label='counter' value={this.state.counter} />

</div>
)

}
}

We must import the dependencies as we did with the other components. As well
as React and ReactDOM, we need to include the components that we’ve written.
Dependencies stored locally can be imported by providing the path to the file in
which they are defined, with the .js removed from the file name:

import React from "react"
import ReactDOM from "react-dom"

110 JavaScript for Data Science

import {UpAndDown} from "./UpAndDown"
import {NumberDisplay} from "./NumberDisplay"

// ...script body...

Finally, we can render the application with ReactDOM as before:

// ...script body...

const mount = document.getElementById("app")
ReactDOM.render(<App/>, mount)

This seems pretty complicated because it is: our small example would be much
simpler without all this indirection. However, we need this strategy to manage large
applications: data and event handlers are defined in one class, then passed into dis­
play components to be displayed and interacted with.

10.3 FETCHING DATA

Let’s use what we’ve learned to look at how the world might end. NASA provides
a web interface to get information about near-approach asteroids. We will use it to
build a small display with:

• a text box for submitting a starting date (get one week by default), and
• a list of asteroids in that time period.

Here’s the first version of our App class:

import React from "react"

import ReactDOM from "react-dom"

import {AsteroidList} from "./AsteroidList"

import {DateSubmit} from "./DateSubmit"

class App extends React.Component {

constructor (props) {

super(props)

this.state = {

// ...fill in...

}

}

onNewDate = (text) => {
// ...fill in...

}

render = () => {

return (

<div>

<DateSubmit newValue={this.onNewDate} />

<AsteroidList asteroids={this.state.asteroids} />

111 Interactive Sites

</div>
)

}
}

const mount = document.getElementById("app")
ReactDOM.render(<App/>, mount)

We’ll test it by displaying asteroids using fake data; as in our first example, the
display component AsteroidList doesn’t modify data, but just displays it in a ta­
ble:

import React from "react"
import ReactDOM from "react-dom"

const AsteroidList = (props) => {
return (
<table>

<tbody>

<tr>

<th>Name</th>

<th>Date</th>

<th>Diameter (m)</th>

<th>Approach (km)</th>

</tr>

{props.asteroids.map((a) => {

return (

<tr key={a.name}>

<td>{a.name}</td>

<td>{a.date}</td>

<td>{a.diameter}</td>

<td>{a.distance}</td>

</tr>
)

})}

</tbody>

</table>
)

}

export {AsteroidList}

React will complain if we don’t provide a unique key to distinguish elements
that we create, since having these keys helps it keep track of the component-to-
DOM relationship, which in turn makes updates much more efficient1. Since each
asteroid’s name is supposed to be unique, we use that name as the key for each table
row.

1https://stackoverflow.com/questions/28329382/understanding-unique-keys-for-array-children-in-react­
js

https://stackoverflow.com
https://stackoverflow.com

112 JavaScript for Data Science

Figure 10.2: Asteroids Application

AsteroidList expects data to arrive in props.asteroids, so let’s put some
made-up values in App for now that we can then pass in:

class App extends React.Component {

constructor (props) {

super(props)

this.state = {

asteroids: [

{name: 'a30x1000', date: '2017-03-03',

diameter: 30, distance: 1000},

{name: 'a5x500', date: '2017-05-05',

diameter: 5, distance: 500},

{name: 'a2000x200', date: '2017-02-02',

diameter: 2000, distance: 200}

]

}

}

// ...other code...
}

Let’s also create a placeholder for DateSubmit:

import React from "react"
import ReactDOM from "react-dom"

const DateSubmit = (props) => {
return (<p>DateSubmit</p>)

}

export {DateSubmit}

and run it to get Figure 10.2.
The next step is to handle date submission. Since we’re trying to instill good

practices, we will make a reusable component whose caller will pass in:

• a text label;

113 Interactive Sites

• a variable to update with the current value of a text box;
• a function to call when the text box’s value changes; and
• another function to call when a button is clicked to submit.

// ...imports as before...

const DateSubmit = ({label, value, onChange, onCommit}) => {
return (
<p>

{label}:

<input type="text" value={value}

onChange={(event) => onChange(event.target.value)} />
<button onClick={(event) => onCommit(value)}>new</button>

</p>
)

}

export {DateSubmit}

Note the use of destructuring in DateSubmit’s parameter list; this was introduced
in Section 6.4 and is an easy way to pull values out of the props parameter.

It’s important to understand the order of operations in the example above.
value={value} puts a value in the input box to display each time DateSubmit
is called. We re-bind onChange and onClick to functions on each call as well (re­
member, JSX gets translated into function calls). So yes, this whole paragraph is
being re-created every time someone types, but React and the browser work together
to minimize recalculation.

Back to our application:

// ...imports as before...

class App extends React.Component {

constructor (props) {

super(props)

this.state = {

newDate: '',

asteroids: [

//...data as before...

]

}

}

onEditNewDate = (text) => {

this.setState({newDate: text})

}

onSubmitNewDate = (text) => {

console.log(�new date ${text}�)

this.setState({newDate: ''})

}

render = () => {

114 JavaScript for Data Science

return (
<div>

<h1>Asteroids</h1>

<DateSubmit

label='Date'

value={this.state.newDate}

onChange={this.onEditNewDate}

onCommit={this.onSubmitNewDate} />

<AsteroidList asteroids={this.state.asteroids} />
</div>

)
}

}

// ...mount as before...

It’s safe to pass this.state.newDate to value because we’re re-drawing each
time there’s a change; remember, we’re passing a value for display, not a reference
to be modified. And note that we are not doing any kind of validation: the user could
type abc123 as a date and we would blithely try to process it.

It’s now time to get real data, which we will do using fetch with a URL. This
returns a promise (Chapter 9), so we’ll handle the result of the fetch in the promise’s
then method, and then chain another then method to transform the data into what
we need:

// ...previous code as before...

onSubmitNewDate = (text) => {

const url = 'https://api.nasa.gov/neo/rest/v1/feed' +

�?api_key=DEMO_KEY&start_date=${text}�

fetch(url).then((response) => {

return response.json()

}).then((raw) => {

const asteroids = this.transform(raw)

this.setState({

newDate: '',

asteroids: asteroids

})

})

}

//...render as before...

Line by line, the steps are:

1. Build the URL for the data
2. Start to fetch data from that URL
3. Give a callback to execute when the data arrives
4. Give another callback to use when the data has been converted from text to JSON

(which we will look at in more detail in Chapter 11).
5. Transform that data from its raw form into the objects we need

Interactive Sites 115

6. Set state

Finally, the method to transform the data NASA gives us is:

// ...previous code as before...

transform = (raw) => {
let result = []
for (let key in raw.near_earth_objects) {
raw.near_earth_objects[key].forEach((asteroid) => {
result.push({
name: asteroid.name,
date: asteroid.close_approach_data[0].close_approach_date,
diameter: asteroid.estimated_diameter.meters.estimated_diameter_max,
distance: asteroid.close_approach_data[0].miss_distance.kilometers

})
})

}
return result

}

// ...render as before...

We built this by looking at the structure of the JSON that NASA returned
and figuring out how to index the fields we need. (Unfortunately, the top level of
near_earth_objects is an object with dates as keys rather than an array, so we
have to use let... in... rather than purely map or forEach.)

10.4 EXERCISES

RESET

Add a “reset” button to the counter application that always sets the counter’s value
to zero. Does using it to wipe out every change you’ve made to the counter feel like
a metaphor for programming in general?

TRANSFORM

Modify all of the examples after the introduction of Babel to use external scripts
rather than in-pace scripts.

EXPORTS

Are the curly braces necessary when exporting from a component file? What happens
if you remove them? Read this blogpost2 and then consider whether it might have
been more appropriate to use default exports and imports in the examples above.

2http://2ality.com/2014/09/es6-modules-final.html

http://2ality.com

116 JavaScript for Data Science

VALIDATION

Modify the application so that if the starting date isn’t valid when the button is
clicked, the application displays a warning message instead of fetching data.

1. Add a field called validDate to the state and initialize it to true.
2. Add an ErrorMessage component that displays a paragraph containing either

“date OK” or “date invalid” depending on the value of validDate.
3. Modify	 onSubmitNewDate so that it either fetches new data or modifies
validDate.

Once you are done, search the Internet for React validation and error messages
and explore other tools you could use to do this.

KEY POINTS

•	 Define event handlers to specify what actions the browser should take when the
user interacts with an application.

•	 The browser passes event objects containing details of events to event handlers.
•	 Use classes to keep state and event handlers together.
•	 React calls a class’s render to display it.
•	 Separate models (which store data) from views (which display it).
•	 Use fetch to get data from servers.
•	 Use destructuring to get individual members from an object in a single step.
•	 Modern JavaScript uses promises to manage asynchronous activities.

11 Managing Data

There’s not much point creating interactive web pages if they don’t have something
to interact with. To provide that, we need something to store data and something
to serve it. We could build one program to do both, but experience teaches that it’s
better to create one for each so that they are easier to understand, test, and maintain.
After tossing a coin, we decide to start with the data store; Chapter 12 will look at
how to build a server.

11.1 DATA FORMATS

The most widely used text format for tabular data is undoubtedly comma-separated
values (CSV). Each row of the table is a line in the file; the values within each
row—i.e., the columns—are separated by commas. Numbers appear as themselves;
strings may or may not be wrapped in quotation marks, unless they contain commas
themselves, in which case they definitely are:

"maroon",128,0,0
"olive",128,128,0
"aqua",0,255,255
"fuchsia",255,0,255

The first line of a CSV file is often a header row that defines the names of the
columns. For example, the small table shown above would better be represented as:

"name","red","green","blue"
"maroon",128,0,0
"olive",128,128,0
"aqua",0,255,255
"fuchsia",255,0,255

Tragically, CSV doesn’t require the first row to be a header, and CSV files usually
don’t specify units or data types. We can guess that the values in the table above
are integers, but it’s all too common to have a CSV file whose columns are labelled
“height” and “weight” without any indication of whether the heights are in feet or
meters or the weights in pounds or kilograms.

CSV is good for tabular data, but a lot of data doesn’t neatly fit into rows and
columns. Many programmers use JSON instead: it supports a subset of the syntax
for values, arrays, and objects in JavaScript, so that (for example) we can store con­
figuration values for a program like this:

{
"name" : "DataExplorer",
"version" : "1.2.1",
"preferences" : {

117

118 JavaScript for Data Science

"colorscheme" : "dark",

"autofill" : true

},
"last_opened" : [

"raw/biotic.dat",

"raw/genomic.dat",

"cooked/inferred.dat"

]
}

JSON can be used for tabular data as well. The whole table is an array, and each
record is an object with name-value pairs:

const colors = [
{"name": "maroon", "red": 128, "green": 0, "blue": 0},
{"name": "olive", "red": 128, "green": 128, "blue": 0},
{"name": "aqua", "red": 0, "green": 255, "blue": 255},
{"name": "fuchsia", "red": 255, "green": 0, "blue": 255}

]

Repeating field names like this is wasteful compared to listing them once at the top
of a table, but it does mean that the fields within rows can be accessed directly using
expressions like colors[1].red.

11.2 SLICING DATA

The data we will use as an example is available in a variety of formats from the Portal
Project Teaching Database1. We will focus on surveys.csv, which has over 35,500
records. That’s a lot to look at, so we will create a 10-record slice for testing.

Although it would be easy to take the first ten, or the last, there’s a good chance
that neither would be representative of the data as a whole. Instead, we will write a
little script that selects some records at random. Since it doesn’t need to be efficient,
we will read everything, pair each line with a random number, sort the lines using
those random numbers as keys, then take the top few lines.

const fs = require('fs')

const [inputFile, numLines, outputFile] = process.argv.splice(2)
const lines = fs.readFileSync(inputFile, 'utf-8')

.split('\n')
header = lines[0]
const sample = lines.slice(1)

.map(line => [Math.random(), line])

.sort((left, right) => { return left[0] - right[0] })

.slice(0, parseInt(numLines))

.map(pair => pair[1])

fs.writeFileSync(outputFile, header + '\n' + sample.join('\n'))

1https://figshare.com/articles/Portal_Project_Teaching_Database/1314459

https://figshare.com

Managing Data 119

When we run this on the command line:

$ node select-random.js ../../data/surveys.csv 10 slice.csv

we get:

record_id,month,day,year,plot_id,species_id,sex,hindfoot_length,weight
18501,3,14,1991,13,OT,M,21,28
2283,1,15,1980,11,OL,M,21,23
19941,5,2,1992,1,PP,M,22,13
27413,12,29,1997,5,,,,
16002,5,9,1989,19,SC,,,
28813,11,21,1998,12,DO,M,35,56
9338,7,4,1984,11,DO,F,35,57
28336,8,22,1998,7,PB,M,26,23
25323,3,16,1997,9,DM,F,33,26
6785,10,23,1982,5,DM,F,37,45

Running it again will probably generate a different data slice, since we’re not
specifying a random number generation seed. We are bad people, and will fix this in
the exercises.

Slicing Command-Line Arguments
When we run:
$ node select-random.js ../../data/surveys.csv 10 slice.csv

the array process.argv contains five strings: the node command,
the name of our script select-random.js, and then the name of the
input file, the number of lines we can, and the name of the output file.
process.argv.slice(2) discards elements 0 and 1 from this list, leav­
ing us the three values we need to assign to inputFile, numLines, and
outputFile respectively. We will explore a better way to do this in the
exercises.

11.3 DATA MANAGER

Rather arbitrarily, we decide that our data manager will be able to answer two ques­
tions:

1. How many records do we have and what range of years do they cover? This is the
kind of opening question that many client programs will ask.

2. What are the minimum, average, and maximum values for weight and hindfoot
length by year for a given range of years? This would be very specific to a par­
ticular kind of client program; a good service would either provide many such
specialized queries or provide a way to apply common aggregation functions to
particular columns.

We will use PapaParse2 to parse our CSV, so our first step is to install it:

2https://www.papaparse.com/

http://www.papaparse.com

120 JavaScript for Data Science

$ npm install papaparse

After loading the library and reading our test data file a couple of times, we break
down and read the documentation, then come up with this as the first version of our
data manager:

const fs = require('fs')
const papa = require('papaparse')

class DataManager {

constructor (filename) {

const raw = fs.readFileSync(filename, 'utf-8')

const options = {header: true, dynamicTyping: true}

this.data = papa.parse(raw, options).data

}
}

module.exports = DataManager

papa.parse takes two arguments: the CSV file to be parsed and a configuration
object that controls how the parser behaves. This configuration object is highly cus­
tomizable.; here, our options instruct the parser to interpret the first row as a header
(which sets column names) and to convert things that look like numbers to numbers
(the dynamicTyping option). The output of papa.parse looks like this:

{ data:
[{ record_id: 18501,

month: 3,

day: 14,

year: 1991,

plot_id: 13,

species_id: 'OT',

sex: 'M',

hindfoot_length: 21,

weight: 28 },

...eight more records...

{ record_id: 6785,

month: 10,

day: 23,

year: 1982,

plot_id: 5,

species_id: 'DM',

sex: 'F',

hindfoot_length: 37,

weight: 45 }],

errors: [],

meta:

{ delimiter: ',',

linebreak: '\n',

aborted: false,

121 Managing Data

truncated: false,

cursor: 350,

fields:

['record_id',

'month',

'day',

'year',

'plot_id',

'species_id',

'sex',

'hindfoot_length',

'weight'] } }

so papa.parse(raw, options).data gets the data we want as JSON. Let’s write
a method to get some overall statistics:

getSurveyStats () {
return {

year_low : this._get(this.data, 'year', Math.min),

year_high : this._get(this.data, 'year', Math.max),

record_count : this.data.length

}

}

// ...other methods...

_get(values, field, func) {
return func(...values.map(rec => rec[field]).filter(val => !isNaN(val)))

}

Functions like Math.min and Math.max take any number of scalar values as
arguments, but do not directly process arrays. Enter spread syntax ...: the no­
tation func(...array) means “pass all the values in the array as separate argu­
ments”, which saves us from writing our own minimum and maximum functions.
Thus, func(...this.data.map(rec => rec[field])) means “select the spec­
ified field from each record in this.data to create an array of fields, then pass all
of those values as arguments to func. We include an underscore at the start of the
name of _get to indicate that we intend it to be used only inside DataManager and
not to be called elsewhere.

Adding the method to get weight and hindfoot length for a range of years is com­
paratively straightforward. First, we write a function to calculate the average of one
or more arguments:

const _average = (...values) => {
let sum = 0
for (let v of values) {
sum += v

}

return sum / values.length

}

122 JavaScript for Data Science

It would be more natural for _average to take an array rather than a variable
number of arguments, but we want to be able to use it in the same way that we use
Math.min and Math.max, so we have to conform to their signature.

After some thought we realize that it’s possible for subset to be empty—i.e., it’s
possible that there are years that have no data in our dataset. We should filter these
out, to prevent unnecessary effort being made to render summary statistics with NaN
values. Remembering that empty arrays are not falsy in JavaScript (Chapter 2), we
decide to test that the subset returned by filtering for each year contains at least one
entry.

The last thing that we need to ensure is that each data object has a unique key,
which will make it much easier for React to efficiently update the display of the data
when we are ready to render it.

The method to get the values for a range of years is now:

getSurveyRange (minYear, maxYear) {
return Array(1 + maxYear - minYear)

.fill(0)

.map((v, i) => minYear + i)

.map(year => {

const subset = this.data.filter(r => r.year === year)

if (subset.length) {

return {

key : toString(year),

year : year,

min_hindfoot_length :this._get(subset,

'hindfoot_length', Math.min),
ave_hindfoot_length : this._get(subset,

'hindfoot_length', _average),
max_hindfoot_length : this._get(subset,

'hindfoot_length', Math.max),
min_weight : this._get(subset, 'weight', Math.min),
ave_weight : this._get(subset, 'weight', _average),
max_weight : this._get(subset, 'weight', Math.max)

}

}

})

}

11.4 EXERCISES

TRACING DATA

Trace the execution of the utility program that creates a small sample of the original
data, explaining what is passed into each of the chained methods calls.

UNRANDOM

Programs that rely on random numbers are impossible to test because there’s (de­
liberately) no way to predict their output. Luckily, computer programs don’t actu­
ally use random numbers: they use pseudo-random numbers that are generated in

123 Managing Data

a repeatable but unpredictable way. Given the same initial seed, a pseudo-random
number generator will always produce the same sequence of values.

There is no way to set a seed for Math.random out of the box, but the seedran­
dom3 package provides an add-on function for this purpose. Install the package and
modify the slice selection utility so that it takes a word or phrase as a command-line
argument and uses it to seed the random number generator.

ONE RECORD PER YEAR

Another way to slice the data for testing purposes is to select one record from each
year. Write a small command-line JavaScript program that:

1. Reads all the data from the CSV.
2. Keeps the first record it finds for each year.
3. Prints these records formatted as SQL insert statements.

ERROR HANDLING

Modify DataManager’s constructor so that it checks for errors.

GENERALIZATION

Modify getSurveyRange so that it can be called like this:

getSurveyRange(minYear, maxYear, 'hindfoot_length', 'weight')

i.e., so that the names of the fields whose minimum, average, and maximum values
are wanted can be passed as strings, and the method will automatically create the
right names and values in its result.

HANDLING COMMAND-LINE ARGUMENTS

Read the documentation for the command-line-args4 package and rewrite the data
slicing script to use it instead of process.argv.slice.

KEY POINTS

•	 Small tabular datasets are commonly stored as Comma-Separated Values (CSV).
•	 CSV can only represent regular data, and CSV files usually don’t include units.
•	 Nested data is commonly stored using JavaScript Object Notation (JSON).
•	 JSON representations of tabular data often include redundant (and therefore pos­

sibly inconsistent) specifications of column names.
•	 PapaParse is a robust CSV parsing library that produces JSON output.

3https://www.npmjs.com/package/seedrandom
4https://www.npmjs.com/package/command-line-args

http://www.npmjs.com
http://www.npmjs.com

http://taylorandfrancis.com

12 Creating a Server

Now that we have a data manager (Chapter 11) the next step is to create a server to
share our data with the world, which we will build using a library called Express1.
Before we start writing code, though, we need to understand how computers talk to
each other.

12.1 HTTP

Almost everything on the web communicates via the HyperText Transfer Protocol
(HTTP). The core of HTTP is a request/response cycle that specifies the kinds
of requests applications can make of servers, how they exchange data, and so on.
Figure 12.1 shows this cycle in action for a page that includes one image.

1. The client (a browser or some other program) makes a connection to a server.
2. It then sends a blob of text specifying what it’s asking for.
3. The server replies with a blob of text and the HTML.
4. The connection is closed.
5. The client parses the text and realizes it needs an image.
6. It sends another blob of text to the server asking for that image.
7. The server replies with a blob of text and the contents of the image file.
8. The connection is closed.

This cycle might be repeated many times to display a single web page, since a
separate request has to be made for every image, every CSS or JavaScript file, and so
on. In practice, a lot of behind-the-scenes engineering is done to keep connections
alive as long as they’re needed, and to cache items that are likely to be re-used.

An HTTP request is just a block of text with two important parts:

•	 The method is almost always either GET (to get data) or POST (to submit data).
•	 The URL is typically a path to a file, but as we’ll see below, it’s completely up to

the server to interpret it.

1https://expressjs.com/

Client
(Browser)

Server

click
link

request
page

parse
HTML

request
image

display
page

parse
request

send
HTML

parse
request

send
HTML

Figure 12.1: HTTP Request/Response Cycle

125

https://expressjs.com

126 JavaScript for Data Science

request line

headers

blank line

body (22 bytes)

GET /lab/index.html HTTP/1.1

Host: bio.euphoric.edu

Accept: text/html

Accept-Language: en-ca,en-us

User-Agent: BrowseAll/1.3

Content-Length: 22

species=452®ion=AUS

Figure 12.2: Structure of an HTTP Request

The request can also contain headers, which are key-value pairs with more infor­
mation about what the client wants. Some examples include:

•	 "Accept: text/html" to specify that the client wants HTML
•	 "Accept-Language: fr, en" to specify that the client prefers French, but will

accept English
•	 "If-Modified-Since: 16-May-2018" to tell the server that the client is only

interested in recent data

Unlike a dictionary, a key may appear any number of times, which allows a request to
do things like specify that it’s willing to accept several types of content. The body of
the request is any extra data associated with it, such as files that are being uploaded.
If a body is present, the request must contain the Content-Length header so that
the server knows how much data to read (Figure 12.2).

The headers and body in an HTTP response have the same form, and mean the
same thing. Crucially, the response also includes a status code to indicate what hap­
pened: 200 for OK, 404 for “page not found”, and so on. Some of the more common
are shown in Table 12.1.

One final thing we need to understand is the structure and interpretation of URLs.
This one:

http://example.org:1234/some/path?value=deferred&limit=200

has five parts:

•	 The protocol http, which specifies what rules are going to be used to exchange
data.

•	 The hostname example.org, which tells the client where to find the server. If
we are running a server on our own computer for testing, we can use the name
localhost to connect to it. (Computers rely on a service called DNS to find the
machines associated with human-readable hostnames, but its operation is out of
scope for this tutorial.)

Creating a Server	 127

Code Name Meaning
100 Continue The client should continue sending data

200 OK The request has succeeded

204 No Content The server completed the request but there is no data

301 Moved Permanently The resource has moved to a new permanent location

307 Temporary Redirect The resource is temporarily at a different location

400 Bad Request The request is badly formatted

401 Unauthorized The request requires authentication

404 Not Found The requested resource could not be found

408 Timeout The server gave up waiting for the client

418 I’m a Teapot An April Fool’s joke

500 Internal Server Error A server error occurred while handling the request

601 Connection Timed Out The server did not respond before the connection

timed out

Table 12.1

HTTP Status Codes

•	 The port 1234, which tells the client where to call the service it wants. (If a host is
like an office building, a port is like a phone number in that building. The fact that
we think of phone numbers as having physical locations says something about our
age. . .)

•	 The path /some/path tells the server what the client wants.
•	 The query parameters value=deferred and limit=200. These come after a

question mark and are separated by ampersands, and are used to provide extra
information.

It used to be common for paths to identify actual files on the server, but the server
can interpret the path however it wants. In particular, when we are writing a data ser­
vice, the segments of the path can identify what data we are asking for. Alternatively,
it’s common to think of the path as identifying a function on the server that we want
to call, and to think of the query parameters as the arguments to that function. We’ll
return to these ideas after we’ve seen how a simple server works.

12.2 HELLO, EXPRESS

A Node-based library called Express handles most of the details of HTTP for us.
When we build a server using Express, we provide callback functions that take three
parameters:

•	 the original request,
•	 the response we’re building up, and
•	 what to do next (which we’ll ignore for now).

We also provide a pattern with each function that specifies what URLs it is to
match. Here is a simple example:

128 JavaScript for Data Science

const express = require('express')

const PORT = 3418

// Main server object.
const app = express()

// Return a static page.
app.get('/', (req, res, next) => {
res.status(200).send('<html><body><h1>Asteroids</h1></body></html>')

})

app.listen(PORT, () => { console.log('listening...') })

The first line of code loads the Express library. The next defines the port we will
listen on, and then the third creates the object that will do most of the work.

Further down, the call to app.get tells that object to handle any GET request for
‘/’ by sending a reply whose status is 200 (OK) and whose body is an HTML page
containing only an h1 heading. There is no actual HTML file on disk, and in fact no
way for the browser to know if there was one or not: the server can send whatever it
wants in response to whatever requests it wants to handle.

Note that app.get doesn’t actually get anything right away. Instead, it registers a
callback with Express that says, “When you see this URL, call this function to handle
it.” As we’ll see below, we can register as many path/callback pairs as we want to
handle different things.

Finally, the last line of this script tells our application to listen on the specified
port, while the callback tells it to print a message as it starts running. When we run
this, we see:

$ node static-page.js

listening...

Our little server is now waiting for something to ask it for something. If we go to
our browser and request http://localhost:3418/, we get a page with a large title
Asteroids on it. Our server has worked, and we can now stop it by typing Ctrl-C in
the shell.

12.3 HANDLING MULTIPLE PATHS

Let’s extend our server to do different things when given different paths, and to
handle the case where the request path is not known:

const express = require('express')

const PORT = 3418

// Main server object.
const app = express()

Creating a Server 129

// Root page.
app.get('/', (req, res, next) => {
res.status(200).send('<html><body><h1>Home</h1></body></html>')

})

// Alternative page.
app.get('/asteroids', (req, res, next) => {
res.status(200).send('<html><body><h1>Asteroids</h1></body></html>')

})

// Nothing else worked.
app.use((req, res, next) => {
res
.status(404)
.send(�<html><body><p>ERROR: ${req.url} not found</p></body></html>�)

})

app.listen(PORT, () => { console.log('listening...') })

The first few lines are the same as before. We then specify handlers for the paths
/ and /asteroids, each of which sends a different chunk of HTML.

The call to app.use specifies a default handler: if none of the app.get handlers
above it took care of the request, this callback function will send a “page not found”
code and a page containing an error message. Some sites skip the first part and only
return error messages in pages for people to read, but this is sinful: making the code
explicit makes it a lot easier to write programs to scrape data.

As before, we can run our server from the command line and then go to various
URLs to test it. http://localhost:3418/ produces a page with the title “Home”,
http://localhost:3418/asteroids produces one with the title “Asteroids”, and
http://localhost:3418/test produces an error page.

12.4 SERVING FILES FROM DISK

It’s common to generate HTML in memory when building data services, but it’s
also common for the server to return files. To do this, we will provide our server
with the path to the directory it’s allowed to read pages from, and then run it with
node server-name.js path/to/directory. We have to tell the server whence
it’s allowed to read files because we definitely do not want it to be able to send
everything on our computer to whoever asks for it. (For example, a request for the
/etc/passwd password file on a Linux server should probably be refused.)

Here’s our updated server:

const express = require('express')

const path = require('path')

const fs = require('fs')

const PORT = 3418

const root = process.argv[2]

130 JavaScript for Data Science

http://localhost:3418/title.html

/

home/

aturing/

web-dir/

title.html

server

...

Figure 12.3: Mapping URLs to Files

// Main server object.
const app = express()

// Handle all requests.
app.use((req, res, next) => {
const actual = path.join(root, req.url)
const data = fs.readFileSync(actual, 'utf-8')
res.status(200).send(data)

})

app.listen(PORT, () => { console.log('listening...') })

The steps in handling a request are:

1. The URL requested by the client is given to us in req.url.
2. We use path.join to combine that with the path to the root directory, which we

got from a command-line argument when the server was run.
3. We try to read that file using readFileSync, which blocks the server until the

file is read. We will see later how to do this I/O asynchronously so that our server
is more responsive.

4. Once the file has been read, we return it with a status code of 200.

If a sub-directory called web-dir holds a file called title.html, and we run the
server as:

$ node serve-pages.js ./web-dir

we can then ask for http://localhost:3418/title.html and get the content of
web-dir/title.html. Notice that the directory ./web-dir doesn’t appear in the
URL: our server interprets all paths as if the directory we’ve given it is the root of
the filesystem.

If we ask for a nonexistent page like http://localhost:3418/missing.html
we get this:

Creating a Server 131

Error: ENOENT: no such file or directory, open 'web-dir/missing.html'
at Object.openSync (fs.js:434:3)
at Object.readFileSync (fs.js:339:35)
... etc. ...

We will see in the exercises how to add proper error handling to our server.

Favorites and Icons
If we use a browser to request a page such as title.html, the browser
may actually make two requests: one for the page, and one for a file called
favicon.ico. Browsers do this automatically, then display that file in
tabs, bookmark lists, and so on. Despite its .ico suffix, the file is (usually)
a small PNG-formatted image, and must be placed in the root directory of
the website.

12.5 CONTENT TYPES

So far we have only served HTML, but the server can send any type of data, including
images and other binary files. For example, let’s serve some JSON data:

// ...as before...

app.use((req, res, next) => {
const actual = path.join(root, req.url)

if (actual.endsWith('.json')) {

const data = fs.readFileSync(actual, 'utf-8')

const json = JSON.parse(data)

res.setHeader('Content-Type', 'application/json')

res.status(200).send(json)

}

else {

const data = fs.readFileSync(actual, 'utf-8')

res.status(200).send(data)

}
})

What’s different here is that when the requested path ends with .json we explic­
itly set the Content-Type header to application/json to tell the client how to
interpret the bytes we’re sending back. If we run this server with web-dir as the di­
rectory to serve from and ask for http://localhost:3418/data.json, a modern
browser will provide a folding display of the data rather than displaying the raw text.

So What’s an API?

A library’s Application Programming Interface (API) is simply the set of

functions other programs are allowed to call. This is usually a subset of

all of the functions defined in the library, since many may be helpers in­

tended for internal use only. Similarly, a server’s API is the set of requests

it knows how to respond to. For example, NASA’s near-approach aster­

oid API (Section 10.3) can handle requests that include an authentication

132 JavaScript for Data Science

key and a starting date, while the server we have built in this chapter can
respond to requests for HTML and JSON files. We will look a little more
closely at API design in Section 15.2.

12.6 EXERCISES

REPORT MISSING FILES

Modify the version of the server that returns files from disk to report a 404 error if a
file cannot be found. What should it return if the file exists but cannot be read (e.g.,
if the server does not have permissions)?

SERVING IMAGES

Modify the version of the server that returns files from disk so that if the file it is asked
for has a name ending in .png or .jpg, it is returned with the right Content-Type
header.

DELAYED REPLIES

Our file server uses fs.readFileSync to read files, which means that it stops each
time a file is requested rather than handling other queries while waiting for the file to
be read. Modify the callback given to app.use so that it uses fs.readFile with a
callback instead.

USING QUERY PARAMETERS

URLs can contain query parameters in the form:

http://site.edu?first=123&second=beta

Read the online documentation for Express2 to find out how to access them
in a server, and then write a server to do simple arithmetic: the URL
http://localhost:3654/add?left=1&right=2 should return 3, while the URL
http://localhost:3654/subtract?left=1&right=2 should return -1.

KEY POINTS

• An HTTP request or response consists of a plain-text header and an optional body.
• HTTP is a stateless protocol.
• Express provides a simple path-based JavaScript server.
• Write callback functions to handle requests matching specified paths.
• Provide a default handler for unrecognized requests.
• Use Content-Type to specify the type of data being returned.
• Use dynamic loading to support plugin extensions.

2https://expressjs.com/

https://expressjs.com

13 Testing

We are bad people, because we have been writing code without testing it. In this
lesson we will redeem ourselves (partially) by correcting that (also partially).

JavaScript uses the same pattern for unit testing as most other modern languages.
Each test is written as a function, and each of those functions tests one particular
aspect of the code. A standalone program called a test runner finds test functions,
runs them, and reports the results. Any setup code that needs to be run before each
test to create the data for the test’s input (called its fixture) is put in a function of its
own. Similarly (but less frequently), if some teardown needs to be done after each
test, we put those operations in a function as well.

Each unit test can have one of three results:

• pass: everything worked,
• fail: the system being tested didn’t do what was expected, or
• error: something went wrong with the test itself.

We can combine tests into test suites (and test suites into larger suites, and so on)
so that we can more easily run related sets of tests. This makes testing during devel­
opment faster, which in turn makes it more likely that we’ll actually do it. Finally,
we write the tests themselves using assertions: statements that check whether or not
some condition holds and generate an error if it doesn’t. Node provides an assert
library with some useful functions for asserting various things; we’ll explore this as
we go along.

13.1 INTRODUCING MOCHA

JavaScript has almost as many testing libraries as it has front-end frameworks. We
will use one called Mocha1 that is popular and well documented. Unlike the libraries
we have seen before, we don’t import anything to use it; instead, it imports our code
and calls our functions.

When we’re writing tests for Mocha to run, we use a function called describe
to create a group of tests and another function called it for each test in that group:

describe('first test', () => {
it('should run without errors', (done) => {
done()

})
})

1https://mochajs.org/

133

https://mochajs.org

134 JavaScript for Data Science

As this example shows, describe’s arguments are an explanatory string and a call­
back function. That callback makes calls to it, which takes:

• another explanatory string describing how the system should behave, and
• a callback that receives a function (called done by convention).

(The name it was chosen so that when we read tests aloud, it sounds like we’re
saying, “It should do this or that.”) At the end of each test we call done to signal
that it has finished. We have to do this because callbacks run out of order, so Mocha
needs to know when each one completes.

We can run our tests from the shell by invoking mocha and giving it the path to
the file that contains the tests:

$./node_modules/.bin/mocha path/to/test.js

first test
+ should run without errors

1 passing (12ms)

As with bundling, we normally put the mocha command in package.json so that
./node_modules/.bin is automatically included in the path. After we add this:

{
...
"scripts": {
...
"test": "mocha",
...

}
}

to package.json, our command becomes:

$ npm test -- path/to/test.js

(Again, everything after -- is passed to the script itself.) If we don’t specify where
to find tests, Mocha looks for a directory called test and runs the files it finds there
whose names begin with test (Figure 13.1).

13.2 REFACTORING

The next step is to refactor our software to make it testable. In the case of our server,
we have to:

• move the code that listens on a port into one file, and
• have that import a file that contains the code to do everything else.

Testing 135

project_dir

package.json...
"test": "mocha"...

source
files

test/

test_config.js
...

describe('group', () => {

it('checks something', (done) => {

...run test...

...check result...

done()

})

})

Figure 13.1: Mocha in Action

Once we have done this, we can run the server code in other contexts. Here’s the
file standalone.js that actually launches a server:

const server = require('./server')
const PORT = 3418
server.listen(PORT,

() => { console.log(�listening on port ${PORT}...�) })

And here is the application code we’ve extracted into server.js so that we can test
it:

const express = require('express')

// Main server object.
let app = express()

// Root page.
app.get('/', (req, res, next) => {
res.status(200).send('<html><body><h1>Home</h1></body></html>')

})

// ...as before...

module.exports = app

Before going any further, we check that we haven’t broken anything by running:

$ node standalone.js

13.3 TESTING THE SERVER

All right: now that we have extracted the code that’s specific to our server, how do
we test it? The answer is yet another library called supertest2 that sends fake HTTP
requests to an Express server that has been split in the way we just split ours and lets
us interact with that server’s replies.

2https://github.com/visionmedia/supertest

https://github.com

136 JavaScript for Data Science

browser

HTTP request

Express server

supertesttest function

HTTP response
function call

function call

function call

application

In Production

For Testing

Figure 13.2: Supertest versus Reality

Here’s a test of a simple request that uses Mocha to manage the test, and su­
pertest’s request function to send something to the server and check the result:

const assert = require('assert')
const request = require('supertest')
const server = require('./server')

describe('server', () => {

it('should return HTML with expected title', (done) => {
request(server)

.get('/')

.expect(200)

.expect('Content-Type', /html/)

.end((err, res) => {

assert(res.text.includes('Home'), 'Has expected title')
done()

})
})

})

Going through this line by line:

1.	 request(server) starts building up a request to send.
2.	 .get(’/’) specifies the path in the URL we are sending.
3.	 .expect(200) checks that the return code is 200 (OK).
4.	 .expect(’Content-Type’, /html/) checks the content type in the returned

value against a regular expression (Appendix H).
5.	 .end is called when the whole response has been received, i.e., when we can start

looking at the content of the page or data that the server has sent.

Testing 137

6. Inside the callback to end, res is the result data. We make sure that its text (i.e.,
res.text) includes the word “Home”. We really should check err here to make
sure everything worked properly, but we’re not quite that virtuous.

7. Finally, we call done() to signal the end of the test. Again, we have to do this
because there’s no way Mocha can know when the enclosing .end(...) will be
called

Let’s run our code:

server
+ should return HTML with expected title (48ms)

1 passing (58ms)

Excellent: let’s add some more tests.

describe('server', () => {

it('should return HTML with expected title', (done) => {
// ...as before...

})

it('should return page as HTML with expected title', (done) => {
request(server)

.get('/asteroids')

.expect(200)

.expect('Content-Type', /html/)

.end((err, res) => {

assert(res.text.includes('Asteroids'), 'Has expected title')

done()

})

})

it('should 404 for other pages', (done) => {
request(server)

.expect(404)

.get('/other')

.end((err, res) => {

assert(res.text.includes('ERROR'), 'Has expected error message')
done()

})
})

})

server
+ should return HTML with expected title (42ms)
+ should return asteroids page as HTML with expected title
+ should 404 for other pages

3 passing (62ms)

138 JavaScript for Data Science

Notice that we check to make sure that the server sends a 404 when we ask for
something that doesn’t exist. Making sure the system fails gracefully is just as im­
portant as making sure that it provides data when asked to.

13.4 CHECKING THE HTML

It’s increasingly common for servers to return data that is rendered by the client rather
than generating and returning HTML, but some servers still do the latter. Do not try
to check this with substrings or regular expressions: the exceptions have exceptions,
and that way lies madness3. Instead, we should parse the HTML to create a structure
in memory and check that; if parsing fails because the HTML is badly formatted,
that’s worth knowing too. The structure in question is our new friend the DOM,
and to get it, we will use (yet another) library called cheerio4. cheerio.load turns
HTML text into a DOM tree; the resulting object can be used like a function, and we
can use the same selectors we met previously to find things in it. Here’s our test:

const assert = require('assert')
const request = require('supertest')
const cheerio = require('cheerio')
const server = require('./server')

describe('server', () => {
it('should have the correct headings', (done) => {
request(server)
.get('/')
.expect('Content-Type', /html/)
.expect(200)
.end((err, res) => {
const tree = cheerio.load(res.text)
assert.equal(tree('h1').length, 1, 'Correct number of headings')
assert.equal(tree('h1').text(), 'Home', 'Correct heading text')
done()

})
})

})

server
+ should have the correct headings (67ms)

1 passing (77ms)

This gets the page as before, parses it, then looks for h1 elements and checks
the text of the first one. (Note that this doesn’t check if the title is Home
because .text() concatenates all the text of the children.) We won’t explore this
approach further because we’re going to serve data for rendering rather than gener­
ating HTML and sending that, but if you’re doing any web scraping at all, libraries
like cheerio are there to help.

3https://stackoverflow.com/a/1732454
4https://cheerio.js.org/

https://cheerio.js.org
https://stackoverflow.com

Testing	 139

13.5 EXERCISES

NOT DONE

What happens if we forget to call done() in a test?

ADDING TESTS

1. What is the most useful test you could add for the asteroids application? Why?
2. Implement it.
3. Ask yourself why tutorials like this one don’t say “please implement it”. Reflect

on the fact that this question didn’t say “please” either. Are you comfortable with
the paternalistic power relationship embodied in the absence of that one little
word, and with the somewhat uncomfortable attempt at ironic humor embodied
in this question?

LIFECYCLE

Suppose a JavaScript program contains some JSX expressions that produce HTML
which is then read and displayed by a browser. Draw a diagram to show the form
taken by an H1 heading containing the word “data” from start to finish.

KEY POINTS

•	 A unit test checks the behavior of one software component in isolation.
•	 The result of a unit test can be pass, fail, or error.
•	 Use Mocha to write and run unit tests in JavaScript.
•	 Put assertions in unit tests to check results.
•	 Combine tests in suites for easier management.
•	 Divide modules into interactive and non-interactive parts for easier testing.
•	 Use supertest to simulate interaction with a server for testing.
•	 HTML is represented in memory using the Document Object Model (DOM).
•	 Check the structure of the DOM rather than the textual representation of the

HTML when testing.

http://taylorandfrancis.com

14 Using Data-Forge

We have now seen how to do everything a data scientist would want to do in
JavaScript except actual data science. This is unfortunately one of the areas where
the language still lags behind R and Python, but statistical libraries are now appear­
ing, and if the last twenty-five years have taught us anything, it’s not to underestimate
JavaScript.

In this chapter we will look at a library called Data-Forge that is designed for
working with tabular data. Data-Forge was inspired by Python’s Pandas library, but
should be familiar to anyone who has worked with the tidyverse in R as well. Its
DataFrame class represents a table made up of named columns and any number
of rows. Dataframes are immutable: once a dataframe has been constructed, its
contents cannot be changed. Instead, every operation produces a new dataframe.
(Some clever behind-the-scenes data recycling makes this much more efficient than
it sounds.)

Like Pandas and the tidyverse, Data-Forge is designed to work on tidy data. As
defined in [Wick2014], tabular data is tidy if:

•	 Each column contains one statistical variable (i.e., one property that was measured
or observed).

•	 Each different observation is in a different row.
•	 There is one table for each set of observations.
•	 If there are multiple tables, each table has a column containing a unique key so

that related data can be linked.

For example, this data is not tidy:

but this data is:

Rodent Pleurisy Rates
Female Male

2018 2019 2018 2019
Jan 0.05 0.07 0.03 0.06
Feb 0.05 0.08 0.04 0.07
Mar 0.05 0.11 0.04 0.10

Year Month Sex Rate
2018 Jan Female 0.05
2018 Feb Female 0.05
2018 Mar Female 0.05
2018 Jan Male 0.03
2018 Feb Male 0.04

141

142 JavaScript for Data Science

2018 Mar Male 0.04
2019 Jan Female 0.07
2019 Feb Female 0.08
2019 Mar Female 0.11
2019 Jan Male 0.06
2019 Feb Male 0.07
2019 Mar Male 0.10

14.1 BASIC OPERATIONS

To get started, we install Data-Forge using npm install data-forge and then
load the library and create a dataframe from a list of objects. Each of these objects
must use the same keys, which become the names of the dataframe’s columns:

const DF = require('data-forge')

const fromObjects = new DF.DataFrame([
{ones: 1, tens: 10},
{ones: 2, tens: 20},
{ones: 3, tens: 30}

])

console.log('fromObjects:\n', fromObjects)

When we print the dataframe, we see this rather complex structure:

fromObjects:
DataFrame {

configFn: null,

content:

{ index: CountIterable {},

values: [[Object], [Object], [Object]],

pairs: MultiIterable { iterables: [Array] },

isBaked: true,

columnNames: ['ones', 'tens'] } }

Each column is stored as a Series object; once in a while, we will need to work
with these objects directly instead of with the dataframe as a whole. (Figure 14.1). If
we want to see the actual data, we need to convert the dataframe back to an array of
objects:

console.log('fromObjects as array:\n', fromObjects.toArray())

fromObjects as array:
[{ ones: 1, tens: 10 },

{ ones: 2, tens: 20 },

{ ones: 3, tens: 30 }]

We can instead create a dataframe by providing the names of the columns in one
list and the rows’ values in another:

143 Using Data-Forge

ones tens

1 100

2 200

3 300

logical

128

0

0

255

255

0

maroon

lime

navy

yellow

fuchsia

aqua

physical

ones

tens

D
at

aF
ra

m
e

S
er

ie
s

Figure 14.1: How Tables Are Stored

const fromSpec = new DF.DataFrame({
columnNames: ['ones', 'tens'],
rows: [
[4, 40],
[5, 50],
[6, 60]

]
})
console.log('fromSpec as array:\n', fromSpec.toArray())

fromSpec as array:
[{ ones: 4, tens: 40 },
{ ones: 5, tens: 50 },
{ ones: 6, tens: 60 }]

However, we usually won’t create a dataframe directly like this; instead, we will
read data from a file or a database. Data-Forge provides a function called fromCSV
for doing this:

const text = �ones,tens
7,70
8,80
9,90�
const fromText = DF.fromCSV(text)
console.log('fromText as array:\n', fromText.toArray())

fromText as array:
[{ ones: '7', tens: '70' },
{ ones: '8', tens: '80' },
{ ones: '9', tens: '90' }]

However we create our dataframe, we can ask it for its columns’ names:

console.log(data.getColumnNames())

144 JavaScript for Data Science

['ones', 'tens']

or get its content as a list of lists (rather than as a list of objects):

console.log(data.toRows())

[[1, 10], [2, 20], [3, 30]]

We can also process the rows using a for loop:

for (let row of data) {
console.log(row)

}

{ ones: 1, tens: 10 }
{ ones: 2, tens: 20 }
{ ones: 3, tens: 30 }

or its forEach method:

data.forEach(row => {
console.log(row)

})

{ ones: 1, tens: 10 }
{ ones: 2, tens: 20 }
{ ones: 3, tens: 30 }

However, a good rule of thumb is that if you’re using a loop on a dataframe, you’re
doing the wrong thing: you should instead use the methods described below.

14.2 DOING CALCULATIONS

Suppose we want to add a new column to a dataframe—or rather, create a new
dataframe with an extra column, since we can’t modify a dataframe in place. To do
this, we create a new Series object to represent that column, then use withSeries
to construct our result:

const double_oh = new DF.Series([100, 200, 300])

const withHundreds = data.withSeries({hundreds: double_oh})
console.log(withHundreds.toArray())

[{ ones: 1, tens: 10, hundreds: 100 },
{ ones: 2, tens: 20, hundreds: 200 },
{ ones: 3, tens: 30, hundreds: 300 }]

Just as we usually create dataframes by reading data from external sources, we
will usually create new columns from existing values. As you probably won’t be sur­
prised to learn, we tell Data-Forge how to do this by writing callback functions. Since
we often want to create several new columns at once, we give the generateSeries
method an object whose keys are the names of the new columns and whose values
are callbacks taking a row as input and producing a new value as output:

145 Using Data-Forge

const sumsAndProducts = data.generateSeries({
sum: row => row.ones + row.tens,
product: row => row.ones * row.tens

})
console.log(sumsAndProducts.toArray())

[{ ones: 1, tens: 10, sum: 11, product: 10 },
{ ones: 2, tens: 20, sum: 22, product: 40 },
{ ones: 3, tens: 30, sum: 33, product: 90 }]

We can also get rid of columns entirely using dropSeries:

const justResults = sumsAndProducts.dropSeries(["ones", "tens"])
console.log(justResults.toArray())

[{ sum: 11, product: 10 },
{ sum: 22, product: 40 },
{ sum: 33, product: 90 }]

Since every dataframe method returns a dataframe, we can use method chaining
to combine operations (Figure 14.2). We have seen this technique before with chains
of .then calls on promises; here, it is used like pipes in the Unix command line or
the pipe operator %>% in modern R code:

const result = data
.withSeries({hundreds: double_oh})
.generateSeries({
sum: row => row.ones + row.tens + row.hundreds

})

.dropSeries(["ones", "tens", "hundreds"])

.toArray()

To make results easier to understand, we will often want to sort our data. Suppose
we have a file containing the red-green-blue values for several colors:

name,red,green,blue
maroon,128,0,0
lime,0,255,0
navy,0,0,128
yellow,255,255,0
fuchsia,255,0,255
aqua,0,255,255

We can pass the name of this file to our program as a command-line argument, read
it (remembering to set the encoding to UTF-8 so that we get characters rather than
raw bytes), and then display it:

const fs = require('fs')
const DF = require('data-forge')

const text = fs.readFileSync(process.argv[2], 'utf-8')
const colors = DF.fromCSV(text)
console.log(colors.toArray())

146 JavaScript for Data Science

ones tens

1 100

2 200

3 300

hundreds

100

200

300

data

double_oh

withSeries

ones tens

1 100

2 200

3 300

hundreds

100

200

300

generateSeries

ones tens

1 100

2 200

3 300

hundreds

100

200

300

sum

111

222

333

dropSeries

sum

111

222

333

111

222

333

toArray

Figure 14.2: A More Complicated Pipeline

[{ name: 'maroon', red: '128', green: '0', blue: '0' },
{ name: 'lime', red: '0', green: '255', blue: '0' },
{ name: 'navy', red: '0', green: '0', blue: '128' },
{ name: 'yellow', red: '255', green: '255', blue: '0' },
{ name: 'fuchsia', red: '255', green: '0', blue: '255' },
{ name: 'aqua', red: '0', green: '255', blue: '255' }]

If we want to see the colors in alphabetical order, we call orderBy with a callback
that gives Data-Forge the value to sort by:

const sorted = colors.orderBy(row => row.name)
console.log(sorted.toArray())

[{ name: 'aqua', red: '0', green: '255', blue: '255' },
{ name: 'fuchsia', red: '255', green: '0', blue: '255' },
{ name: 'lime', red: '0', green: '255', blue: '0' },
{ name: 'maroon', red: '128', green: '0', blue: '0' },
{ name: 'navy', red: '0', green: '0', blue: '128' },
{ name: 'yellow', red: '255', green: '255', blue: '0' }]

To sub-sort (Figure 14.3) by another column we use thenBy:

const	 doubleSorted = colors
.orderBy(row => row.green)
.thenBy(row => row.blue)
.dropSeries(['name', 'red'])

console.log(doubleSorted.toArray())

[{ green: '0', blue: '0' },
{ green: '0', blue: '128' },
{ green: '0', blue: '255' },

147 Using Data-Forge

red green

128 0

0 255

0 0

blue

0

0

128

name

maroon

lime

navy

255 255

255 0

0 255

0

255

255

yellow

fuchsia

aqua

green

0

255

0

blue

0

0

128

255

0

255

0

255

255

Figure 14.3: Sorting and Sub-sorting

{ green: '255', blue: '0' },
{ green: '255', blue: '0' },
{ green: '255', blue: '255' }]

We can remove duplicates with distinct:

const notTheSame = colors.distinct(row => row.red)
console.log(notTheSame.toArray())

[{ name: 'maroon', red: '128', green: '0', blue: '0' },
{ name: 'lime', red: '0', green: '255', blue: '0' },
{ name: 'yellow', red: '255', green: '255', blue: '0' }]

but this is trickier than it appears. Each row does indeed have a distinct red value,
but Data-Forge gets to decide which row to keep from each subset. What’s more
surprising is that multi-column distinct doesn’t work:

const multiColumn = colors
.distinct(row => [row.red, row.green])
.orderBy(row => row.red)
.thenBy(row => row.green)

console.log(multiColumn.toArray())

[{ name: 'navy', red: '0', green: '0', blue: '128' },
{ name: 'lime', red: '0', green: '255', blue: '0' },
{ name: 'aqua', red: '0', green: '255', blue: '255' },
{ name: 'maroon', red: '128', green: '0', blue: '0' },
{ name: 'fuchsia', red: '255', green: '0', blue: '255' },
{ name: 'yellow', red: '255', green: '255', blue: '0' }]

This isn’t Data-Forge’s fault. In JavaScript, two arrays are only equal if they’re
the same object, i.e., [0] === [0] is false. We will explore ways of doing multi-
column distinct in the exercises.

148	 JavaScript for Data Science

14.3 SUBSETS

You may have noticed that the color values in the table above are strings rather than
numbers. If we want Data-Forge to convert values to more useful types, we can use
the methods parseDates, parseFloats, and so on. The program below does this
for a subset of USGS data about earthquakes in August 20161:

const fs = require('fs')
const DF = require('data-forge')

const text = fs.readFileSync('earthquakes.csv', 'utf-8')
const	 earthquakes = DF

.fromCSV(text)

.parseDates('Time')

.parseFloats(['Latitude', 'Longitude', 'Depth_Km', 'Magnitude'])
console.log('Data has', earthquakes.count(), 'rows')

Data has 798 rows

Whether we convert it or not, we will often want to work with subsets of data. We
can select values by position using head and tail (which are named after classic
Unix commands):

console.log(earthquakes.head(3).toArray())

[{ Time: 2016-08-24T07:36:32.000Z,
Latitude: 42.6983,
Longitude: 13.2335,
Depth_Km: 8.1,
Magnitude: 6 },

{ Time: 2016-08-24T07:37:26.580Z,

Latitude: 42.7123,

Longitude: 13.2533,

Depth_Km: 9,

Magnitude: 4.5 },

{ Time: 2016-08-24T07:40:46.590Z,

Latitude: 42.7647,

Longitude: 13.1723,

Depth_Km: 9.7,

Magnitude: 3.8 }]

console.log(earthquakes.tail(3).toArray())

[{ Time: 2016-08-26T10:09:45.380Z,
Latitude: 42.6953,
Longitude: 13.2363,
Depth_Km: 9.5,
Magnitude: 2.3 },

{ Time: 2016-08-26T10:11:55.960Z,

Latitude: 42.6163,

1https://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php

https://earthquake.usgs.gov

149 Using Data-Forge

Longitude: 13.2985,

Depth_Km: 11,

Magnitude: 2.1 },

{ Time: 2016-08-26T10:21:09.870Z,

Latitude: 42.6153,

Longitude: 13.2952,

Depth_Km: 7.5,

Magnitude: 3 }]

If we want data from the middle of the table, we can skip a few rows and then
take as many as we want (Figure 14.4):

console.log(earthquakes.skip(10).take(3).toArray())

[{ Time: 2016-08-24T07:47:51.540Z,
Latitude: 42.6675,
Longitude: 13.3238,
Depth_Km: 6.5,
Magnitude: 3.3 },

{ Time: 2016-08-24T07:52:25.710Z,

Latitude: 42.7447,

Longitude: 13.2827,

Depth_Km: 7.9,

Magnitude: 2.9 },

{ Time: 2016-08-24T07:52:43.210Z,

Latitude: 42.6378,

Longitude: 13.2313,

Depth_Km: 10.9,

Magnitude: 3.1 }]

However, it’s far more common to select rows by the values they contain rather
than by their position. Just like the Array.filter method we met way back in
Section 3.4, we do this by giving Data-Forge a callback function that tells it whether
a given row should be kept or not. This text can be as complex as desired, but must
work row by row: we cannot make a decision about one row based on the values in
the rows before it or after it.

const large = earthquakes.where(row => (row.Magnitude >= 5.0))
console.log(large.toArray())

[{ Time: 2016-08-24T07:36:32.000Z,
Latitude: 42.6983,
Longitude: 13.2335,
Depth_Km: 8.1,
Magnitude: 6 },

{ Time: 2016-08-24T08:33:28.890Z,

Latitude: 42.7922,

Longitude: 13.1507,

Depth_Km: 8,

Magnitude: 5.4 }]

150 JavaScript for Data Science

Lat Long

... ...

Depth

...

Time

...

Mag

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

skip 10

take 3

Figure 14.4: Selecting by Position

14.4 AGGREGATION

Working with individual observations is all very well, but if we want to understand
our data, we need to look at its aggregate properties. If, for example, we want to
know the average depth and magnitude of our earthquakes, we use the summarize
method:

const averageValues = earthquakes.summarize({
Depth_Km: series => series.average(),
Magnitude: series => series.average()

})
console.log(averageValues)

{ Depth_Km: 9.545614035087722, Magnitude: 2.5397243107769376 }

As with filter, we can do many calculations at once by giving summarize sev­
eral callbacks. The keys of the object we pass in specify the columns we want to
aggregate; the callbacks invoke methods of the Series class that Data-Forge uses
to store individual columns. Instead of producing a dataframe with a single row,
summarize produces an object whose keys match the names of the columns in our
original dataframe.

Aggregation is often combined with grouping: for example, we may want to cal­
culate the average weight of rats of different breeds or the distribution of votes by
province. The first step is to group the data:

151 Using Data-Forge

const groupedByMagnitude = earthquakes.groupBy(row => row.Magnitude)
console.log(�${groupedByMagnitude.count()} groups�)
console.log(groupedByMagnitude.head(2).toArray())

28 groups
[DataFrame {

configFn: null,
content:
{ index: [ExtractElementIterable],

values: [ExtractElementIterable],

pairs: [Array],

isBaked: false,

columnNames: [ColumnNamesIterable] } },

DataFrame {

configFn: null,

content:

{ index: [ExtractElementIterable],

values: [ExtractElementIterable],

pairs: [Array],

isBaked: false,

columnNames: [ColumnNamesIterable] } }]

As the output shows, groupBy returns an array containing one new dataframe for
each group in our original data. Here’s how we find the average depth of earthquakes
according to magnitude:

const	 averaged = earthquakes
.groupBy(row => row.Magnitude)
.select(group => ({
Magnitude: group.first().Magnitude,
Depth_Km: group.deflate(row => row.Depth_Km).average()

}))

.inflate()

.orderBy(row => row.Magnitude)

console.log(averaged.toArray())

[{ Magnitude: 2, Depth_Km: 9.901052631578946 },
{ Magnitude: 2.1, Depth_Km: 9.702083333333333 },
{ Magnitude: 2.2, Depth_Km: 9.843037974683545 },
...
{ Magnitude: 4.5, Depth_Km: 9.4 },
{ Magnitude: 5.4, Depth_Km: 8 },
{ Magnitude: 6, Depth_Km: 8.1 }]

Going through this step by step:

1. The groupBy call produces a list of 28 dataframes, one for each distinct value of
Magnitude.

2.	 select then converts each of these dataframes into an object whose Magnitude
is equal to the magnitude of the group’s first element and whose Depth_Km is the
average of the depths.

•	 We can use the magnitude of the group’s first element because all of the
magnitudes in the group are the same.

152 JavaScript for Data Science

Lat Long

... ...

Depth

...

Time

...

Mag

...

...

...

...

...

...

Lat Long

... ...

Depth

...

Time

...

Mag

...

...

Lat Long

... ...

Depth

...

Time

...

Mag

...

...

Mag

Depth

...

...

Mag

Depth

...

...

Depth

...

Mag

...

......

groupBy

select /
deflate

select

Figure 14.5: Summarizing Groups

•	 We must also remember to use deflate to turn a column of a dataframe
into a Series so that we can then call average.

3. The output of	 select is a Series of two-valued objects, so we must call
inflate to convert it back to a DataFrame.

4. Finally, we order by the magnitude of the earthquakes to produce our output.

Figure 14.5 shows these steps graphically. It’s easy to forget the inflate and
deflate steps at first (we did when writing this example), but they quickly become
habitual.

14.5 IN REAL LIFE

To wrap up our exploration of Data-Forge, we will explore data from http://
dataisplural/data.world to find the annual recreational visits to national parks in the
United States for the last ten years. Our strategy is to:

1. import the data,
2. inspect the columns to make sure the data is clean,
3. fix any problems we notice,
4. group the data by year and summarize the total visitors, and then
5. filter to keep only the years that are greater than 2009.

We’ll start by reading the data and looking at the first couple of rows:

const fs = require('fs')

const DF = require('data-forge')

const text = fs.readFileSync('../../data/national_parks.csv', 'utf-8')

const raw = DF.fromCSV(text)

console.log(raw.head(2).toArray())

--------- ------ --------- -----------------

Using Data-Forge 153

[{ year: '1904',
gnis_id: '1163670',
geometry: 'POLYGON',
metadata: 'NA',
number_of_records: '1',
parkname: 'Crater Lake',
region: 'PW',
state: 'OR',
unit_code: 'CRLA',
unit_name: 'Crater Lake National Park',
unit_type: 'National Park',
visitors: '1500' },

{ year: '1941',

gnis_id: '1531834',

geometry: 'MULTIPOLYGON',

metadata: 'NA',

number_of_records: '1',

parkname: 'Lake Roosevelt',

region: 'PW',

state: 'WA',

unit_code: 'LARO',

unit_name: 'Lake Roosevelt National Recreation Area',

unit_type: 'National Recreation Area',

visitors: '0' }]

It’s always good to look at the structure of the data before we dive into any anal­
ysis. The dataframe method detectTypes shows us the frequency of data types in
our dataframe:

const typesDf = raw.detectTypes()
console.log(typesDf.toString())

__index__ Type Frequency Column

0 string 100 year
1 string 100 gnis_id
2 string 100 geometry
3 string 100 metadata
4 string 100 number_of_records
5 string 100 parkname
6 string 100 region
7 string 100 state
8 string 100 unit_code
9 string 100 unit_name
10 string 100 unit_type
11 string 100 visitors

We want numbers instead of strings for year and visitors, but before we trans­
form them, let’s check and see if any values in those columns are NA, meaning “not
available”:

const cleaned = raw
.where(row => ((row.year != 'NA') && (row.visitors != 'NA')))

console.log(�${raw.count()} original rows and ${cleaned.count()} cleaned rows�)

--------- ------ --------- -----------------

--------- ---- -----------

154	 JavaScript for Data Science

21560 original rows and 21556 cleaned rows

Four rows contain missing values. We probably wouldn’t spot them if we scrolled
through the data ourselves, so it’s good that we let the computer do the work. Let’s
remove those four rows and convert the two columns of interest from strings to num­
bers:

const	 data = raw
.where(row => ((row.year != 'NA') && (row.visitors != 'NA')))
.parseFloats(['year', 'visitors'])

console.log(�${data.count()} rows�)
console.log(data.detectTypes().toString())

21556 rows
__index__ Type Frequency Column

0 number 100 year
...
11 number 100 visitors

This looks good: we have dropped the four offending rows and everything else is
a number. With clean data, we can now group by year and find the total number of
visitors in each year:

const	 annual = data
.groupBy(row => row.year)
.select(group => ({
year: group.first().year,
visitors: group.deflate(row => row.visitors).sum()

}))

.inflate()

.orderBy(row => row.year)

console.log(annual.toString())

__index__ year visitors

0 1904 120690
112 1905 140954
88 NaN 13764633135
55 1906 30569
113 1907 32935
61 1908 42768
111 1909 60899
110 1910 173416
...
23 2011 276799292
91 2012 281392715
70 2013 271305455
89 2014 290105230
78 2015 304730566
75 2016 328483428

Uh oh. What’s that NaN doing there in the third row? Are there still some missing
values in the year column?

Using Data-Forge 155

const numNan = data
.where(row => (isNaN(row.year) || isNaN(row.visitors)))
.count()

console.log(�${numNan} rows have NaN�)

382 rows have NaN

The exercises will look at where these non-numbers have come from and how we
should handle them. Even if you don’t live close to a national park, we encourage
you to take a break and step outside before tackling the exercises below.

14.6 EXERCISES

OTHER DATA FORMATS

Write a short program that reads data from colors.csv, converts the red-green­
blue values to numbers, and saves the result as JSON. Once that is working, write
another program that reads the JSON file and converts it back to CSV. Are there any
differences between your second program’s output and your original CSV file?

DIRECTIONAL SORTING

Modify the program in Section 14.2 to sort color values by increasing red and de­
creasing green.

MULTI-COLUMN DISTINCT

Section 14.2 pointed out that we cannot use distinct to find rows with distinct
combinations of values. What can we do? To show that your idea works, write a
program that gets distinct combinations of red and green values from the color data:

red,green
0,0
0,255
128,0
255,0
255,255

REVISITING DATA MANIPULATION

Back in the chapter on data manipulation, we aggregated surveys.csv to find
the minimum, maximum, and average values for year, hindfoot_length, and
weight. Repeat this exercise using the methods of data-forge.

GROUPING AND AGGREGATING

Retrace the steps in the example that calculated the average depth of earthquakes of
different magnitudes and show the data structure after each method call. Are they all
dataframes, or are other data structures created or manipulated as well?

156 JavaScript for Data Science

NOT A NUMBER

Write a short pipeline that prints out the values in the year and visitors columns
that wind up being converted to NaN. (Hint: copy the columns, convert the copies to
numbers, filter to keep those rows, then print the original values.)

KEY POINTS

•	 Create a DataFrame from an array of objects with identical keys, from a spec with
columnNames and rows fields, or by parsing text that contains CSV or JSON.

•	 If you’re using a loop on a dataframe, you’re doing the wrong thing.
•	 Use method chaining to create pipelines that filter data and create new values from

old.
•	 Use grouping and aggregation to summarize data.

15 Capstone Project

It’s time to bring everything together in an extended example: a (slightly) interactive
visualization of species data from the Portal Project Teaching Database1. Our plan is
to:

• slice data for testing,
• write a data server to serve that data,
• test the server,
• build an interactive tabular display of our data, and
• add visualization.

This will require a few new ideas, but will mostly recapitulate what’s come before.

15.1 DATA MANAGER

We could use exactly the same data manager as the one we built in Chapter 11,
but let’s apply our new-found knowledge of the Data-Forge library instead. As a
reminder, the key class in our data manager is:

class DataManager {

constructor (filename) {
// ...read and store data from CSV file...

}

getSurveyStats () {
// ...return summary statistics...

}

getSurveyRange (minYear, maxYear) {
// ...return slice of data...

}
}

The new DataManager must still begin by reading data from a CSV file, so we
keep the line where we use fs to open the file and convert the rest of constructor:

constructor (filename) {
const raw = fs.readFileSync(filename, 'utf-8')
this.data = DF.fromCSV(raw)
.parseInts(['record_id','month','day','year','plot_id'])
.parseFloats(['hindfoot_length','weight'])

}

1https://figshare.com/articles/Portal_Project_Teaching_Database/1314459

157

https://figshare.com

158 JavaScript for Data Science

Remember that _get method we had to write to summarize the data for
each year? Working with dataframes allows us to avoid doing that ourselves in
getSurveyStats and makes things comparatively easy to read:

getSurveyStats () {
return {
year_low: this.data.deflate(row => row.year).min(),
year_high: this.data.deflate(row => row.year).max(),
record_count: this.data.count()

}
}

We must also adapt getSurveyRange to work with the dataframe:

getSurveyRange (minYear, maxYear) {
return Array(1 + maxYear - minYear)
.fill(0)
.map((v, i) => minYear + i)
.map(year => {
const subset = this.data.where(r => r.year === year)
if (subset.count()) {
return {
key: toString(year),
year: year,
min_hindfoot_length: subset.deflate(r => r.hindfoot_length)

.min(),
ave_hindfoot_length: subset.deflate(r => r.hindfoot_length)

.average(),
max_hindfoot_length: subset.deflate(r => r.hindfoot_length)

.max(),
min_weight: subset.deflate(r => r.weight)

.min(),
ave_weight: subset.deflate(r => r.weight)

.average(),
max_weight: subset.deflate(r => r.weight)

.max()
}

}
})

}

This removes the need for the _get method, but when we test the code we find
that blank spaces are displayed where the summary values should be for a suspicious
number of years. On closer inspection, we discover that min and other summarizing
methods are sensitive to missing data: they return NaN if any values are absent in the
series on which they are called, or undefined if they’re all missing. We therefore
need an additional filter step to remove the rows with missing data in the columns
that we’re interested in (weight and hindfoot length):

// ...as before...
if (subset.count()) {

return {

key: toString(year),

159 Capstone Project

year: year,
min_hindfoot_length:	 subset

.where(r => !isNaN(r.hindfoot_length))

.deflate(r => r.hindfoot_length)

.min(),
ave_hindfoot_length:	 subset

.where(r => !isNaN(r.hindfoot_length))

.deflate(r => r.hindfoot_length)

.average(),
max_hindfoot_length:	 subset

.where(r => !isNaN(r.hindfoot_length))

.deflate(r => r.hindfoot_length)

.max(),
min_weight:	 subset

.where(r => !isNaN(r.weight))

.deflate(r => r.weight)

.min(),

ave_weight:	 subset

.where(r => !isNaN(r.weight))

.deflate(r => r.weight)

.average(),

max_weight:	 subset

.where(r => !isNaN(r.weight))

.deflate(r => r.weight)

.max()

}

}

// ...as before...

Making these changes we discover that, although the summarizing functions run
and return NaN or undefined when presented with a series with at least one missing
observation, they throw an error when called on a completely empty series (that is,
a series of length zero). To make our data manager robust to this, we go back to
writing internal methods to ensure that data is only summarized if it actually exists
in the first place:

getSurveyRange (minYear, maxYear) {
return Array(1 + maxYear - minYear)

.fill(0)

.map((v, i) => minYear + i)

.map(year => {

const subset = this.data.where(row => row.year === year)

if (subset.count()) {

return {
key: toString(year),
year: year,
min_hindfoot_length: this._getMin(subset, 'hindfoot_length'),
ave_hindfoot_length: this._getAve(subset, 'hindfoot_length'),
max_hindfoot_length: this._getMax(subset, 'hindfoot_length'),
min_weight: this._getMin(subset, 'weight'),
ave_weight: this._getAve(subset, 'weight'),
max_weight: this._getMax(subset, 'weight')

}

}

160 JavaScript for Data Science

})

}

_getMin (yearData, columnName) {

const filtered = yearData.where(row => !isNaN(row[columnName]))

if (filtered.count()) {

return filtered.deflate(row => row[columnName]).min()

} else {

return 'no data'

}

}

_getAve (yearData, columnName) {

const filtered = yearData.where(row => !isNaN(row[columnName]))

if (filtered.count()) {

return filtered.deflate(row => row[columnName]).average()

} else {

return 'no data'

}

}

_getMax (yearData, columnName) {

const filtered = yearData.where(row => !isNaN(row[columnName]))

if (filtered.count()) {

return filtered.deflate(row => row[columnName]).max()

} else {

return 'no data'

}

}

15.2 SERVER

The server is going to be almost the same as the one in Chapter 12. However, we
need to connect it to the data manager. We’ll do this by having the driver create a
data manager and then pass that data manager to the server when the latter is created:

const DataManager = require('./data-manager')
const server = require('./server-0')

const PORT = 3418

const filename = process.argv[2]
const db = new DataManager(filename)
const app = server(db)
app.listen(PORT, () => {
console.log(�listening on port ${PORT}...�)

})

As you can probably guess from the fact that we’re referring to server-0, we’re
going to be making some changes down the road. Here’s the start of the server it
works with:

const express = require('express')

Capstone Project 161

// 'dataManager' is a global variable that refers to our database.
// It must be set when the server is created.
let dataManager = null

// Main server object.
const app = express()

// ...handle requests...

module.exports = (dbm) => {
dataManager = dbm
return app

}

We’ll look at handling requests for data in the next section. The most important
thing for now is the way we manage the connection to the data manager. Down at the
bottom of server-0.js, we export a function that assigns its single argument to a
variable called dataManager. Inside the methods that handle requests, we’ll be able
to send database queries to dataManager.

This variable is global within this file, but since it’s not exported, it’s invisible
outside. Variables like this are called module variables, and give us a way to share
information among the functions in a module without giving anything outside the
module a way to cause (direct) harm to that information.

15.3 API

The next step is to decide what our server’s API will be, i.e., what URLs it will
understand and what data they will fetch. GET /survey/stats will get summary
statistics as a single JSON record, and GET /survey/:start/:end gets aggregate
values for a range of years. (We will add error checking on the year range as an
exercise.) Anything else will return a 404 error code and a snippet of HTML telling
us we’re bad people. We will put this code in server.js and a command-line driver
in driver.js for testability. The server functions are:

// Get survey statistics.
app.get('/survey/stats', (req, res, next) => {
const data = dataManager.getSurveyStats()
res.setHeader('Content-Type', 'application/json')
res.status(200).send(data)

})

// Get a slice of the survey data.
app.get('/survey/:start/:end', (req, res, next) => {
const start = parseInt(req.params.start)
const end = parseInt(req.params.end)
const data = dataManager.getSurveyRange(start, end)
res.setHeader('Content-Type', 'application/json')
res.status(200).send(data)

})

We also write an error handling function:

162 JavaScript for Data Science

// Nothing else worked.
app.use((req, res, next) => {
page = �<html><body><p>error: "${req.url}" not found</p></body></html>�
res.status(404)
.send(page)

})

Now let’s write our first test:

const path = require('path')

const assert = require('assert')

const request = require('supertest')

const DataManager = require('./data-manager')

const make_server = require('./server-0')

TEST_DATA_PATH = path.resolve(__dirname, 'test-data.csv')

describe('server', () => {

it('should return statistics about survey data', (done) => {
expected = {

minYear: 1979,

maxYear: 2000,

count: 10

}

const db = new DataManager(TEST_DATA_PATH)

const server = make_server(db)

.get('/survey/stats')

.expect(200)

.expect('Content-Type', 'application/json')

.end((err, res) => {

assert.deepEqual(res.body, expected, '')
done()

})
})

})

Note that the range of years is 1979-2000, which is not the range in the full dataset.
We run this with:

$ npm test -- src/capstone/back/test-server.js

and it passes.

15.4 THE DISPLAY

The front end is a straightforward recapitulation of what we’ve done before. There is
a single HTML page called index.html:

<!DOCTYPE html>
<html>
<head>
<title>Creatures</title>

163 Capstone Project

<meta charset="utf-8">
<script src="app.js" async></script>

</head>

<body>

<div id="app"></div>

</body>
</html>

The main application in app.js imports components to display summary statis­
tics, choose a range of years, and display annual data. There is not usually such a
close coupling between API calls and components, but it’s not a bad place to start.
Note that we are using import because we’re trying to be modern, even though the
back end still needs require.

import React from 'react'
import ReactDOM from 'react-dom'
import SurveyStats from './SurveyStats'
import ChooseRange from './ChooseRange'
import DataDisplay from './DataDisplay'

class App extends React.Component {

constructor (props) {
// ...constructor...

}

componentDidMount = () => {
// ...initialize...

}

onStart = (start) => {
// ...update start year...

}

onEnd = (end) => {
// ...update end year...

}

onNewRange = () => {
// ...handle submission of year range...

}

render = () => {
// ...render current application state...

}
}

ReactDOM.render(
<App />,
document.getElementById('app')

)

The constructor defines the URL for the data source and sets up the initial state,
which has summary data, start and end years, and data for those years:

164 JavaScript for Data Science

constructor (props) {

super(props)

this.baseUrl = 'http://localhost:3418'

this.state = {

summary: null,

start: '',

end: '',

data: null

}

}

The method componentDidMount is new: it fetches data for the very first time so
that the user sees something useful on the page when they first load it.

componentDidMount = () => {

const url = �${this.baseUrl}/survey/stats�

fetch(url).then((response) => {

return response.json()

}).then((summary) => {

this.setState({

summary: summary

})

})

}

We don’t call this method ourselves; instead, React automatically calls it once
our application and its children have been loaded and initialized. We can’t fetch the
initial data in the application’s constructor because we have no control over the order
in which bits of display are initialized. On the upside, we can use response.json()
directly because we know the source is returning JSON data. This method is the only
place where the summary is updated, since the data isn’t changing underneath us.

Next up we need to handle typing in the “start” and “end” boxes. The HTML
controls in the web page will capture the characters without our help, but we need
those values in our state variables:

onStart = (start) => {

this.setState({

start: start

})

}

onEnd = (end) => {

this.setState({

end: end

})

}

When the button is clicked, we send a request for JSON data to the appropriate
URL and record the result in the application’s state. React will notice the state change
and call render for us. More precisely, the browser will call the first then callback
when the response arrives, and the second then callback when the data has been
converted to JSON.

Capstone Project 165

onNewRange = () => {
const params = {

method: 'GET',

headers: {

'Accept': 'application/json',

'Content-Type': 'application/json'

}
}
const url = �${this.baseUrl}/survey/${this.state.start}/${this.state.end}�
fetch(url, params).then((response) => {
return response.json()

}).then((data) => {

this.setState({

data: data

})

})

}

Now let’s update the display with SurveyStats, ChooseRange, DataChart, and
DataDisplay, which are all stateless components (i.e., they display things but don’t
change anything):

render = () => {

const tableStyle = {overflow: 'scroll', height: '200px'}

return (

<div>

<h1>Creatures</h1>

<SurveyStats data={this.state.summary} />

<ChooseRange

start={this.state.start} onStart={this.onStart}

end={this.state.end} onEnd={this.onEnd}

onNewRange={this.onNewRange} />

<DataChart data={this.state.data} />

<div style={tableStyle}>

<DataDisplay data={this.state.data} />

</div>

</div>

)

}

15.5 THE TABLES

We will display survey statistics as tables, with a paragraph fallback when there’s
no data. First, we display summary statistics for the whole dataset (as returned by
the GET /survey/stats query we wrote a handler for earlier) as a table at the top
of the page. (Again, we need parentheses around the HTML fragment so that it will
parse properly.)

import React from 'react'

const SurveyStats = ({data}) => {
if (data === null) {
return (<p>no data</p>)

166 JavaScript for Data Science

}

return (

<table>

<tbody>

<tr><th>record count</th><td>{data.record_count}</td></tr>

<tr><th>year low</th><td>{data.year_low}</td></tr>

<tr><th>year high</th><td>{data.year_high}</td></tr>

</tbody>
</table>

)
}

export default SurveyStats

Next, we display aggregated statistics for a given range of years (the GET
/survey/:start/:end query) in another table.

import React from 'react'

const DataDisplay = ({data}) => {

if (! data) {

return (<p>no data</p>)

}

const columns = [

'year',

'min_hindfoot_length',

'ave_hindfoot_length',

'max_hindfoot_length',

'min_weight',

'ave_weight',

'max_weight'

]

return (

<table>

<tbody>

<tr>{columns.map((c) => (<th>{c}</th>))}</tr>

{data.filter(r => r).map((record) => {

return (<tr>{columns.map((c) => (<td>{record[c]}</td>))}</tr>)

})}
</tbody>

</table>
)

}

export default DataDisplay

Like SurveyStats, DataDisplay returns a table listing the results returned from
the server. Unlike SurveyStats, this component needs to check whether each record
exists before it builds the table row. Remember that, when we defined how the year
range query is handled in DataManager earlier, we told it to only return record

Capstone Project	 167

objects for those years that have data. Here, we add .filter(r => r) before map­
ping the data to the callback to ensure that DataDisplay will only try to make tr
elements from non-null records. We do the same when plotting the data.

15.6 THE CHART

We initially tried using Vega-Lite directly for the chart, but after a few fail­
ures and some online searching, we switched to react-vega-lite: Vega-Lite’s
vega-embed wants to modify an existing DOM element when called, while
react-vega-lite constructs an element to be put in place at the right time, which
proved easier to use. The steps are:

1. Create a paragraph placeholder if there’s no data.
2. Re-organize non-null data into the form the chart needs.
3. Construct a spec like the ones we have seen before.
4. Create options to turn off the annoying links (also seen before).
5. Return an instance of the VegaLite component.

import React from 'react'
import VegaLite from 'react-vega-lite'

const DataChart = ({data}) => {
if (! data) {
return (<p>no data</p>)

}

const	 values = data

.filter(r => r)

.map(r => ({x: r.ave_hindfoot_length, y: r.ave_weight}))

let spec = {

'$schema': 'https://vega.github.io/schema/vega-lite/v2.0.json',

'description': 'Mean Weight vs Mean Hindfoot Length',

'mark': 'point',

'encoding': {

'x': {'field': 'x', 'type': 'quantitative'},

'y': {'field': 'y', 'type': 'quantitative'}

}

}

let options = {

'actions': {

'export': false,

'source': false,

'editor': false

}

}

let scatterData = {

'values': values

}

return (<VegaLite spec={spec} data={scatterData} options={options}/>)

}

export default DataChart

168 JavaScript for Data Science

Figure 15.1: First Attempt at Viewing Capstone Project

The other components are similar to those we have seen before.

15.7 RUNNING IT

In order to test our application, we need to run a data server, and then launch our
application with Parcel. The easiest way to do that is to open two windows on our
computer and make each half the width (or height) of our screen so that we can see
messages from both halves of what we’re doing.

In one window, we run:

$ node src/capstone/back/driver-0.js src/capstone/back/test-data.csv

Note that we don’t use npm run dev to trigger Parcel: this is running on the server,
so no bundling is necessary.

In our other window, we run:

$ npm run dev src/capstone/front/index.html

which displays:

> js4ds@0.1.0 dev /Users/stj/js4ds

> parcel serve -p 4000 "src/capstone/front/index.html"

Server running at http://localhost:4000

+ Built in 20.15s.

We then open http://localhost:4000 in our browser and see Figure 15.1.
That’s unexpected: we should see the initial data displayed. If we open the console
in the browser and reload the page, we see this error message:

Cross-Origin Request Blocked:
The Same Origin Policy disallows reading the remote resource \
at http://localhost:3418/survey/stats.

(Reason: CORS header 'Access-Control-Allow-Origin' missing).

169 Capstone Project

The “Learn More” link given with the error message takes us to this page2, which
uses many science words we don’t know. A web search turns up this article on
Wikipedia3, which tells us that cross-origin resource sharing (CORS) is a security
mechanism. If a page loads some JavaScript, and that JavaScript is allowed to send
requests to servers other than the one that the page came from, then villains would be
able to do things like send passwords saved in the browser to themselves. The details
are too complex for this tutorial; the good news is that they’ve been wrapped up in a
Node library called cors, which we can add to our server with just a couple of lines
of code:

const express = require('express')

const cors = require('cors') // added

let dataManager = null

const app = express()

app.use(cors()) // added

app.get('/survey/stats', (req, res, next) => {
// ...as before...

})

app.get('/survey/:start/:end', (req, res, next) => {
// ...as before...

})

app.use((req, res, next) => {
// ...as before...

})

module.exports = (dbm) => {
// ...as before...

}

Since this code is saved in server-1.js, we need to create a copy of the driver
called driver-1.js that invokes it. Let’s run that:

$ node src/capstone/back/driver-1.js src/capstone/back/test-data.csv

and then re-launch our application to get Figure 15.2.
This is much better. We can now type some dates into the “start” and “end” boxes

and, after we press “update”, we get a chart and table of the aggregated statistics for
the year range given (Figure 15.3).

We’ve built an interface, used it to submit queries that are then handled by a server,
which returns data that can be converted to content by our React components, and
our capstone project is complete.

2https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS/Errors/CORSMissingAllowOrigin
3https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

https://en.wikipedia.org
https://developer.mozilla.org

170 JavaScript for Data Science

Figure 15.2: Second Attempt at Viewing Capstone Project

Figure 15.3: Completed Capstone Project

Capstone Project 171

15.8 EXERCISES

REPORTING OTHER DATA

A user has asked for the number of male and female animals observed for each year.

1. Should you add this to the existing query for yearly data or create a new API call?
2. Implement your choice.

ERROR CHECKING

1. Modify the server to return 400 with an error message if the range of years re­
quested is invalid

2. Compare your implementation to someone else’s. Did you define “invalid” in the
same way, i.e., will your programs always return the same status codes for every
query?

ADDING MORE TESTS

1. Our updated server-1.js doesn’t have a test associated with it. Make a copy of
test-server.js and adjust it to test this version of the server.

2. What other elements of the application could and should be tested? Try writing
tests for those. In doing this, did you discover imperfections in the example code?
If so, we’d love to hear about them (see Appendix C).

USE ALL THE DATA

Create a database using all of the survey data and test the display. What bugs or
shortcomings do you notice compared to displaying test data?

MERGING DISPLAYS

The SurveyStats and DataDisplay components in the front end both display ta­
bles.

1. Write a new component TableDisplay that will display an arbitrary table given
a list of column names and a list of objects which all have (at least) those fields.

2. Replace SurveyStats and DataDisplay with your new component.
3. Modify your component so that it generates a unique ID for each value in the

table. (Hint: you may need to pass in a third parameter to each call to serve as the
root or stem of those unique IDs.)

FORMATTING

Modify DataDisplay to format fractional numbers with a single decimal place, but
leave the integers as they are. Ask yourself why, seven decades after the invention of
digital computers, this isn’t easier.

172 JavaScript for Data Science

DATA, DATA EVERYWHERE

Modify DataChart so that the word data isn’t used in so many different ways. Does
doing this make you feel better about yourself as a person? Modify it again so that
the height and width of the chart are passed in as well. Did that help?

KEY POINTS

• Use slices of actual data to test applications.
• Test summaries and small cases so that results can be checked by hand.
• Store state in a class, use pure functions to display it.

16 Finale

We have come a long way since console.log(’hello, world’) in Chapter 2.
Callbacks and promises, JSON and web servers, packaging, unit tests, and visualiza­
tion: every modern language can do them, but JavaScript is an increasingly popular
choice. Yes, it has its flaws, but if we avoid some of the legacy features in Appendix G
it’s both usable and powerful.

Our journey doesn’t stop here, though. The appendices explore some next steps,
such as logging what our server does (Appendix I) and using a relational database
(Appendix K) instead of a text file as a data store. Beyond that, you could look
at more advanced techniques in JavaScript [Have2018], explore the full power of
the D31 library for interactive visualization [Meek2017], dive into data wrangling
[Davi2018], or start over completely the way JavaScript programmers do every eight
months and rewrite everything with Web Components2. Whatever you do, we hope
that this tutorial has helped you get started.

Contributions of all kinds are welcome, from errata and minor improvements to
entirely new sections and chapters. Please file an issue3 or submit a pull request4

in our GitHub repository5. Everyone whose work is incorporated will be acknowl­
edged. Please see the contributors’ guide for more information, and please note that
all contributors are required to abide by our Code of Conduct.

KEY POINTS

• We have learned a lot.
• Contributions are very welcome.

1https://d3js.org/
2https://developer.mozilla.org/en-US/docs/Web/Web_Components
3https://github.com/software-tools-in-javascript/js4ds/issues
4https://github.com/software-tools-in-javascript/js4ds/pulls
5https://github.com/software-tools-in-javascript/js4ds/

173

https://github.com
https://github.com
https://github.com
https://developer.mozilla.org
https://d3js.org

http://taylorandfrancis.com

Bibliography

[Auro2018] Valerie Aurora and Mary Gardiner. How to Respond to Code of Conduct
Reports. A practical step-by-step guide to handling code of conduct issues.
Frame Shift Consulting, 2018.

[Davi2018] Ashley Davis. Data Wrangling with JavaScript. A step-by-step guide to
managing data with JavaScript. Manning, 2018. ISBN: 978-1617294846.

[Foge2005] Karl Fogel. Producing Open Source Software: How to Run a Successful
Free Software Project. The definitive guide to managing open source software
development projects. O’Reilly Media, 2005. ISBN: 0596007590.

[Free1972] Jo Freeman. “The Tyranny of Structurelessness”. In: The Second Wave
2.1 (1972). Points out that every organization has a power structure: the only
question is whether it’s accountable or not.

[Have2018] Martijn Haverbeke. Eloquent Javascript. 3rd. A widely-used programmer-
oriented guide to modern JavaScript. No Starch Press, 2018. ISBN: 978­
1593279509.

[Lind2008] Van Lindberg. Intellectual Property and Open Source: A Practical
Guide to Protecting Code. A thorough dive into intellectual property issues re­
lated to open source software. O’Reilly Media, 2008. ISBN: 978-0596517960.

[Meek2017]	 Elijah Meeks. D3.js in Action. 2nd. A comprehensive guide to the D3
visualization framework. Manning, 2017. ISBN: 978-1617294488.

[Mina1986] Anne Minahan. “Martha’s Rules”. In: Affilia 1.2 (June 1986), pp. 53–
56. DOI: 10.1177/088610998600100206.

[Mori2012] Andrew Morin, Jennifer Urban, and Piotr Sliz. “A Quick Guide to
Software Licensing for the Scientist-Programmer”. In: PLoS Computational
Biology 8.7 (July 2012). A short introduction to software licensing for non­
specialists. DOI: 10.1371/journal.pcbi.1002598.

[Wick2014] Hadley Wickham. “Tidy Data”. In: Journal of Statistical Software
59.10 (2014). The defining paper on tidy data. DOI: 10.18637/jss.v059.i10.

[Wils2019] Greg Wilson. Teaching Tech Together. How to create and deliver lessons
that work and build a teaching community around them. Taylor & Francis,
2019. ISBN: 978-0-367-35328-5.

175

http://taylorandfrancis.com

A License

This is a human-readable summary of (and not a substitute for) the license. Please
see https://creativecommons.org/ licenses/by-nc/4.0/ legalcode for the full legal text.

This work is licensed under the Creative Commons Attribution-NonCommercial 4.01

license (CC-BY-NC-4.0).

You are free to:

•	 Share—copy and redistribute the material in any medium or format
•	 Adapt—remix, transform, and build upon the material.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

•	 Attribution—You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not
in any way that suggests the licensor endorses you or your use.

•	 NonCommercial—You may not use the material for commercial purposes.

No additional restrictions—You may not apply legal terms or technological mea­
sures that legally restrict others from doing anything the license permits.

Notices:

•	 You do not have to comply with the license for elements of the material in the
public domain or where your use is permitted by an applicable exception or limi­
tation.

•	 No warranties are given. The license may not give you all of the permissions nec­
essary for your intended use. For example, other rights such as publicity, privacy,
or moral rights may limit how you use the material.

1https://creativecommons.org/licenses/by-nc/4.0/

177

https://creativecommons.org
https://creativecommons.org

http://taylorandfrancis.com

B Code of Conduct

In the interest of fostering an open and welcoming environment, we as contributors
and maintainers pledge to making participation in our project and our community
a harassment-free experience for everyone, regardless of age, body size, disabil­
ity, ethnicity, gender identity and expression, level of experience, education, socio­
economic status, nationality, personal appearance, race, religion, or sexual identity
and orientation.

B.1 OUR STANDARDS

Examples of behavior that contributes to creating a positive environment include:

•	 using welcoming and inclusive language,
•	 being respectful of differing viewpoints and experiences,
•	 gracefully accepting constructive criticism,
•	 focusing on what is best for the community, and
•	 showing empathy towards other community members.

Examples of unacceptable behavior by participants include:

•	 the use of sexualized language or imagery and unwelcome sexual attention or
advances,

•	 trolling, insulting/derogatory comments, and personal or political attacks,
•	 public or private harassment,
•	 publishing others’ private information, such as a physical or electronic address,

without explicit permission, and
•	 other conduct which could reasonably be considered inappropriate in a profes­

sional setting

B.2 OUR RESPONSIBILITIES

Project maintainers are responsible for clarifying the standards of acceptable behav­
ior and are expected to take appropriate and fair corrective action in response to any
instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are not
aligned to this Code of Conduct, or to ban temporarily or permanently any con­
tributor for other behaviors that they deem inappropriate, threatening, offensive, or
harmful.

179

180 JavaScript for Data Science

B.3 SCOPE

This Code of Conduct applies both within project spaces and in public spaces when
an individual is representing the project or its community. Examples of representing
a project or community include using an official project e-mail address, posting via
an official social media account, or acting as an appointed representative at an online
or offline event. Representation of a project may be further defined and clarified by
project maintainers.

B.4 ENFORCEMENT

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported
by emailing the project team1. All complaints will be reviewed and investigated and
will result in a response that is deemed necessary and appropriate to the circum­
stances. The project team is obligated to maintain confidentiality with regard to the
reporter of an incident. Further details of specific enforcement policies may be posted
separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other mem­
bers of the project’s leadership.

B.5 ATTRIBUTION

This Code of Conduct is adapted from the Contributor Covenant2 version 1.4.

1gvwilson@third-bit.com
2https://www.contributor-covenant.org

http://www.contributor-covenant.org
mailto:gvwilson@third-bit.com

C Contributing

Contributions of all kinds are welcome, from errata and minor improvements to
entirely new sections and chapters: please submit an issue or pull request to our
GitHub repository1. Everyone whose work is incorporated will be acknowledged;
please note that all contributors are required to abide by our Code of Conduct (Ap­
pendix B). Please note that we use Simplified English rather than Traditional English,
i.e., American rather than British spelling and grammar. We encourage translations;
if you would like to take this on, please email us2.

If you wish to report errata or suggest improvements to wording, please include
the chapter name in the first line of the body of your report (e.g., Testing Data
Analysis).

1https://github.com/software-tools-in-javascript/js4ds/
2gvwilson@third-bit.com

181

https://github.com
mailto:gvwilson@third-bit.com

http://taylorandfrancis.com

D Glossary

absolute path: A path that points to the same location in the filesystem regardless of
where it’s evaluated. An absolute path is the equivalent of latitude and longitude
in geography. See also relative path.

aggregation function: A function that combines many values into one, such as sum
or max.

alias: A second or subsequent name referring to the same data or function.
anonymous function: A function that is defined without giving it a name, such as

a callback defined where it is used. Anonymous functions are sometimes called
lambda functions because the Greek letter lambda is used for them in mathematics.

Application Programming Interface (API): the set of functions that a library or
web service makes available for other code to use.

argument: see parameter.
array: A collection of values stored in a particular order and indexed numerically.

Arrays are written as comma-separated values in square brackets, such as [’a’,
’b’, ’c’]. The term list is often used synonymously.

ASCII: A widely-used set of numeric codes for representing characters from the
Latin alphabet and common punctuation symbols, now superseded by Unicode.

assertion: A statement that something is true at a certain point in a program. Asser­
tions are often used to define tests, but are also used in production code to check
that software is behaving as it should.

attribute: A named property attached to an HTML element.
backward-compatible: Able to work consistently with older systems.
body (of an HTTP message): any optional data sent after the message’s headers.
body (of a statement): The statements in a program that are nested within or con­

trolled by another statement, such as those making up a function or those that are
only executed if the condition of an if is true.

Boolean: A value that can be either true or false, named after the English mathe­
matician George Boole (deceased).

bundler: A tool that combines JavaScript files, web pages, images, and other assets
into a single bundle for deployment.

cache: A place where copies of recently-used values are stored for quicker access.
call stack: A data structure that stores information about function calls that are cur­

rently in progress. Each function call adds another table of variable-value pairs to
the top of the stack; when the function completes, that table is discarded. See also
closure.

183

184 JavaScript for Data Science

callback function: A function A that is passed to another function B for B to call
at a later time. Callback functions are used to implement delayed actions, such as
what to do when data arrives in response to a network request.

Cascading Style Sheets (CSS): A way to describe how HTML should be rendered.
catch: To take responsibility for handling an exception. Catch is the counterpart of

throw.
Creative Commons–Attribution License (CC-BY): A license that allows people

to re-use work as long as they cite its original source.
character encoding: A specification of how characters are stored as bytes. The most

commonly-used encoding today is UTF-8.
child class: A new class that extends an existing class (called the parent class).
child node: A node in a tree that is below some other node (which is called the child

node’s parent).
class: A programming structure that defines the properties and behavior of a family

of related objects. Classes can inherit from other classes to specify or change
behavior incrementally.

client: A program such as a browser that sends requests to a server and does some­
thing with the response. It is sometimes helpful to think of clients as sorcerers
petitioning ancient gods for favors. Sometimes.

client-side page generation: To create an HTML page within a client using data
provided by a server. See also server-side page generation.

closure: A set of variables defined in the same scope whose existence has been pre­
served after that scope has ended. Closures are one of the trickiest ideas in pro­
gramming.

component (in React): A user-defined “tag” associated with a call to a function that
generates HTML.

condition: The logical test that controls whether or not the body of an if statement
executes or not.

constructor: A “method” that is automatically called to initialize an object when it
is created.

Comma-Separated Values (CSV): A text format for tabular data in which each
record is one row and fields are separated by commas. There are many minor
variations, particularly around quoting of strings.

connection manager: An object that maintains a connection to a database. When
the code is finished working with the database, the connection manager ensures
that the connection is closed gracefully, which helps to avoid the corruption of
data.

Content Delivery Network (CDN): A geographically distributed set of servers that
store commonly-used or recently-used data such as web pages so that they can be
served more quickly.

Glossary 185

constant: a variable whose value cannot be changed. Note that the value itself might
be changed: for example, after the statement const v = [’a’, ’b’], the name
v will always refer to the same array, but the array’s contents can be changed. See
also variable.

Cross-Origin Resource Sharing (CORS): A way to control requests made for data
and other resources that aren’t served by the site that gave the browser the original
page.

dataframe: A data structure designed to store tabular data. A dataframe has zero or
more named columns and zero or more rows, each of which has exactly one value
for each column.

declarative programming: A style of programming in which the user specifies
what they want, and the computer figures out how to deliver it.

deployment: The act of making software available for others to use.
destructuring: a form of assignment that unpacks a data structure in one step, such

as [a, b] = [1, 2] or {left, right} = {left: 1, right: 2}.
Domain Name System (DNS): A decentralized naming system for computers that

translates logical names such as third-bit.com into the addresses of particular
computers.

document: An entire HTML page.
Document Object Model (DOM): A standard way to represent HTML in memory.

The elements and attributes of the page, along with its text, are stored as nodes
organized in a tree.

dotted notation: A common way to refer to the parts of structures in programming
languages. whole.part means “the thing called part belonging to whole”.

driver: A program that provides a standard interface through which to communicate
with another piece of hardware or software. Every graphics card has a driver that
translates generic drawing commands into card-specific operations; every database
comes with drivers that (theoretically) allow other programs to talk to them all in
the same way.

element: An individual component of a web page. In HTML, elements are enclosed
in matching <tag> and </tag> pairs, or written as <tag/> if they contain no
content. Elements are represented as nodes in the DOM.

entry point: A function with a known name and signature that a framework requires
every plugin or other dynamically-loaded content to have. The entry point is (as
the name suggests) how the framework gets into the plugin.

escape sequence: A sequence of characters used to represent some other character
that would otherwise have a special meaning. For example, the escape sequence
\" is used to represent a double-quote character inside a double-quoted string.

event handler: A callback function that does something in response to a particular
interaction with a browser, such as a key being pressed or a link being clicked.

event listener: see event handler.

186 JavaScript for Data Science

event loop: The fundamental processing cycle in JavaScript that takes the next task
from a list and runs it, possibly adding more tasks to the list as it does so.

event object: An object that the system passes to an event handler that contains
information about the event, such as which key was pressed.

exception: An object that stores information about an error or other unusual event
in a program. One part of a program will create and throw an exception to signal
that something unexpected has happened; another part will catch it.

extend: To create a new class from an existing class. We say that the new class
inherits from the old one.

external style sheet: A set of CSS definitions placed in an external file rather than
inside a web page. See also internal style sheet.

falsy: A horrible neologism meaning “equivalent to false”. See also the equally hor­
rible truthy.

fat arrow function: A function defined using (parameters) => {body}. Fat ar­
row functions treat the special value this in a less inconsistent way than their
older equivalents.

field: A named part of a record in a relational database. Fields are typically shown
as columns in a table.

fixture: The data on which a unit test is run.
functional programming: A style of programming in which data is transformed

through successive application of functions, rather than by using control structures
such as loops. Functional programming in JavaScript relies heavily on callbacks
and higher-order functions.

global installation: A JavaScript library placed in a location where it can be ac­
cessed by all users and projects. See also local installation.

global variable: A variable defined outside any particular function, which is there­
fore visible to all functions. See also local variable.

GNU Public License (GPL): A license that allows people to re-use software as long
as they distribute the source of their changes.

header row: If present, the first of a CSV file that defines column names (but tragi­
cally, not their data types or units).

heterogeneous: Having mixed type. For example, an array is said to be heteroge­
neous if it contains a mix of numbers, character strings, and values of other types.
See also homogeneous.

higher-order function: A function that operates on other functions. For example,
the higher-order function forEach executes a given function once on each value
in an array. Higher-order functions are heavily used in functional programming.

homogeneous: Having a single type. For example, an array is said to be homoge­
neous if it contains only numbers or only character strings, but not a mix of the
two.

Glossary 187

hostname: The part of a URL that specifies the computer to talk to. In the URL
http://example.com/something/, the hostname is example.com; in the URL
http://localhost:1234/, it is localhost.

HyperText Transfer Protocol (HTTP): The HyperText Transfer Protocol used to
exchange information between browsers and websites, and more generally be­
tween other clients and servers. HTTP is a stateless protocol in which communi­
cation consists of requests and responses.

HTTP header: A name-value pair at the start of an HTTP request or response.
Headers are used to specify what data formats the sender can handle, the date and
time the message was sent, and so on.

HTTP method: The verb in an HTTP request that defines what the client wants to
do. Common methods are GET (to get data) and POST (to submit data).

HTTP request: A precisely-formatted block of text sent from a client (such as a
browser) to a server that specifies what resource is being requested, what data
formats the client will accept, and so on.

HTTP response: A precisely-formatted block of text sent from a server back to a
client in reply to a request.

HTTP status code: A numerical code that indicates what happened when an HTTP
request was processed, such as 200 (OK), 404 (not found), or 500 (internal server
error).

immutable: Data that cannot be changed after being created.
in-memory database: A database that is stored in memory rather than in permanent

storage. In-memory databases are often used for testing.
inherit: To acquire properties and methods from a parent class. See also extend.
inner loop: A loop contained in the body of another loop. See also nested loop.
instance: If an object obj is of a particular class cls, we say that obj is an instance

of cls.
instance method: A method that is called using, and operates on, a particular object.

See also static method.
internal style sheet: A set of CSS definitions placed inside a web page rather than

in an external file. See also external style sheet.
JavaScript Object Notation (JSON): A way to represent data by combining basic

values like numbers and character strings in arrays and name/value structures.
The acronym stands for “JavaScript Object Notation”; unlike better-defined stan­
dards like XML, it is unencumbered by a syntax for comments or ways to define
schemas.

library: see module.
list: see array.
local installation: A JavaScript library placed inside a particular project, and only

accessible within that project. See also global installation.

188 JavaScript for Data Science

local server: A server run on the user’s own computer, usually for testing purposes
during development.

local variable: A variable defined inside a function which is only visible within that
function. See also global variable and closure.

logging: To record information about a program’s execution in a structured way.
logging transport: A channel through which logging messages are sent, such as

standard output (for the user’s screen) or a database connection.
member variable: see property.
memory diagram: A picture showing the variables a program contains and the data

they refer to.
method: A function attached to an object, typically called using dotted notation. In

JavaScript and many other languages, a special variable called this is provided
to methods to refer to the particular object for which the method is being called.

method chaining: A style of programming in which each method call returns either
the original object or a newly-constructed object so that other method calls can be
appended to create long chains of calculations. Method chaining produces code
that looks like obj.a().b().c().

minimization: To remove spaces and other extraneous characters from source files
(and possibly even rename variables). This makes those files smaller and faster to
deploy at the expense of readability.

MIT License: A license that allows people to re-use software with no restrictions.
model (of data): How data is stored. See also view.
module: A set of variables, functions, and/or classes grouped together for easier

management (typically but not always in a single file). Modules are sometimes
also called libraries.

module variable: A variable that is visible within a module but not outside it. See
also scope.

mutation: Changing data in place, such as modifying an element of an array or
adding a record to a database.

name collision: The ambiguity that arises when two or more things in a program
that have the same name are active at the same time. The call stack was invented
in part to address this problem.

nested loop: A loop that is contained in another loop. The inner loop can run many
times for each iteration of the outer loop.

Node: An open source implementation of JavaScript for use outside the browser.
node: An in-memory representation of an element in an HTML page (not to be con­

fused with Node.js). See also DOM.
NoSQL database: Any database that doesn’t use the relational model. The awk­

ward name comes from the fact that such databases don’t use SQL as a query
language.

Glossary 189

Not a Number (NaN): A special value used to represent an invalid number, such as
the result of dividing zero by zero.

object: A clump of variables and/or methods grouped together in a program. In most
languages, objects can only be created as instances of classes, but JavaScript calls
anything created using {...} an object. Do not seek to walk in the footsteps of
the sages; seek rather what they sought.

object-oriented programming (OOP): A style of programming centered around
constructing self-contained objects that communicate through well-defined (or at
least “defined”) interfaces.

observer-observable: A widely-used programming pattern in which some objects
are notified and take action when other objects change state or take action.

outer loop: A loop that contains another loop. See also nested loop.
override: to replace a definition of a method in a parent-class with a new definition

in a child class.
query parameter: A placeholder in an SQL query that must be filled in with an

actual value in order for the query to run.
package manager: A program that does its best to keep track of the bits and bobs

of software installed on a computer. The most widely used package manager for
JavaScript is called NPM; it does its best, but really, without proper discipline
on the part of programmers, it’s like Boromir trying to hold back the orcs or a
kindergarten teacher trying to keep everyone’s shirt clean during finger-painting.

parameter: A variable whose value is passed into a function when the function is
called. Some writers distinguish parameters (the variables) from arguments (the
values passed in), but others use the terms in the opposite sense. It’s all very con­
fusing.

parent class: An existing class that has been extended to create a new class. (The
new class is called the child class.)

parent node: The node in a tree that is above some other node. Every node has a
parent except the root node.

parsing: To translate the text of a program or web page into a data structure in mem­
ory that the program can then manipulate.

polymorphism: Literally, “having many forms”. The term refers to the way in which
objects whose methods have the same names and parameters can be used inter­
changeably.

port: A logical endpoint for communication, like a phone number in an office build­
ing. In the URL http://example.com:8081/something, the port is 8081.
Only one program may use a port at any time.

production code: Software that is delivered to an end user. The term is used to dis­
tinguish such code from test code, deployment infrastructure, and everything else
that programmers write along the way.

190 JavaScript for Data Science

promise: A way to handle delayed computations in JavaScript. Promises were sup­
posed to make programmers’ lives simpler.

prototype: An idiosyncratic mechanism used in the original definition of JavaScript
for sharing properties between objects that we unfortunately still have to cope
with.

property: A variable associated with an object. The term is used to distinguish an
object’s passive data from its executable methods. Properties are sometimes called
member variables.

pseudo-random number: A value generated in a repeatable way that has the prop­
erties of being truly random.

pseudo-random number generator: A function that can generate a series of
pseudo-random numbers after being initialized with a seed.

public domain license (CC-0): A license that allows people to re-use material how­
ever they want with no restrictions and no requirement of attribution.

race condition: A situation in which the result of a computation can vary due to
operations being performed in different orders.

raise: see throw.
refactor: To reorganize or clean up code in a way that doesn’t change its behavior.
read-evaluate-print loop (REPL): An interactive program that reads a command

typed in by a user, executes it, prints the result, and then waits patiently for the
next command. REPLs are often used to explore new ideas or for debugging.

record: A set of related values. In a relational database, a record is typically shown
as a single row in a table. See also field.

regular expression: A pattern for matching text, written as text itself. Regular ex­
pressions are sometimes called “regexp”, “regex”, or “RE”, and are as powerful
as they are cryptic.

relational database: A database that organizes information into tables, each of
which has a fixed set of named fields (shown as columns) and a variable num­
ber of records (shown as rows). See also SQL.

relative path: A path whose destination is interpreted relative to some other loca­
tion, such as the current directory. A relative path is the equivalent of giving direc­
tions using terms like “straight” and “left”. See also absolute path.

responsive design: An approach to building web pages and other applications that
resizes and reorganizes things smoothly for different sizes of screens.

RGB: A way to represent colors as triples of red, green, and blue intensities, each of
which ranges from 0 to 255. RGB is often augmented in modern systems to create
RGBA, where the fourth component is the pixel’s transparency.

root: The only node in a tree that doesn’t have a parent.
root directory: The directory that contains everything else, directly or indirectly.

The root directory is written / (a bare forward slash).

Glossary 191

root element: The element in a document that contains every other element. The
root element of a web page is the html element.

schema: A specification of the “shape” of data, such as the fields making up a
database table or the ways in which structures can be nested in JSON.

scope: The portion of a program within which a definition can be seen and used.
See also global-variable, local-variable, module-variable, and (if you are brave)
closure.

seed: A value used to initialize a pseudo-random number generator.
selector: A way to identify elements within an HTML document. The selector
h2#contents, for example, means “the h2 element with the ID contents”.

server: A program that waits for requests from clients and sends them data in re­
sponse. It is sometimes helpful to think of servers as harassed parents trying to
babysit a room full of unruly children.

server-side page generation: To create an HTML page on a server. That HTML is
then delivered as-is to a browser for display. See also client-side page generation.

spread syntax: The ... in ...some_array, which means “interpolate the values
of the array in place”.

SQL: The language used for writing queries for relational databases. The term was
originally an acronym for Structured Query Language.

signature: The ordered list of argument data types required by a function or method.
If two functions or methods have the same signature, they can be called in the same
way.

stateful: To retain information from one operation to the next.
stateless: To not retain information from one operation to the next.
static method: one that belongs to the class as a whole rather than to objects of that

class. Static methods are often used to implement helper methods for classes. See
also instance method.

string: A block of text in a program. The term is short for “character string”.
string interpolation: The process of inserting text corresponding to specified values

into a string, usually to make output human-readable.
table: A set of uniformly-formatted records in a relational database. Tables are

usually drawn with rows (each of which represents one record) and columns (each
of which represents a field).

tag: A short textual label identifying a kind of element in an HTML page.
Commonly-used tags include p (for a paragraph) and h1 (for a level-1 heading).

template: A document with some placeholders that can be filled in with specific
values. Templates are often used to create personalized email messages and web
pages, though their efficacy is predicated upon relentless commercialization and
devaluation of modern society’s sense of what constitutes “personal”.

test runner: A program that finds and runs unit tests and reports their results.

192 JavaScript for Data Science

test suite: A set of unit tests, usually stored in files that follow a prescribed naming
convention.

throw: To signal that something unexpected or unusual has happened in a program
by creating an exception and handing it to the error-handling system, which then
tries to find a point in the program that will catch it. (Some languages call this
raising an exception.)

tidy data: Tabular data that satisfies four conditions:
•	 Each column contains one statistical variable (i.e., one property that was

measured or observed).
•	 Each different observation is in a different row.
•	 There is one table for each set of observations.
•	 If there are multiple tables, each table has a column containing a unique key

so that related data can be linked.
tree: A data structure containing strictly-nested nodes. Every node except the root

node must have exactly one parent node, but each node may have zero or more
children.

truthy: A truly Orwellian neologism meaning “not equivalent to false”. See also
falsy, but only if you are able to set aside your respect for the English language.

Unicode: A standard that defines numeric codes for many thousands of characters
and symbols. Unicode does not define how those numbers are stored; that is done
by standards like UTF-8.

unit test: A test that exercises one property or expected behavior of a system.
URL: A multi-part identifier that specifies something on a computer network. A

URL may contain a protocol (such as http), a hostname (such as example.com),
a port (such as 80), a path (such as /homepage.html), and query parameters.

UTF-8: A way to store the numeric codes representing Unicode characters in mem­
ory that is backward-compatible with the older ASCII standard.

variable: A name in a program that has some data associated with it. A variable’s
value can be changed after definition. See also constant.

view (of data): How data is presented. See also model.
whitespace: The space, newline, carriage return, and horizontal and vertical tab

characters that take up space but don’t create a visible mark. The name comes
from their appearance on a printed page in the era of typewriters.

XML: A set of rules for defining HTML-like tags and using them to format docu­
ments (typically data). XML achieved license plate popularity in the early 2000s,
but its complexity led many programmers to adopt JSON instead.

E Key Points

INTRODUCTION

•	 Modern JavaScript is a good tool for building desktop and web-based applica­
tions.

•	 This course is for people who know what loops and functions are, but have never
used JavaScript or built web applications.

•	 Node is a command-line interpreter for JavaScript, which can be used interac­
tively or to run scripts in files.

•	 NPM is the Node Package Manager, which can be used to find, install, update,
build, and execute JavaScript libraries.

BASIC FEATURES

•	 Use console.log to print messages.
•	 Use dotted notation X.Y to get part Y of object X.
•	 Basic data types are Booleans, numbers, and character strings.
•	 Arrays store multiple values in order.
•	 The special values null and undefined mean ‘no value’ and ‘does not exist’.
•	 Define constants with const and variables with let.
•	 typeof returns the type of a value.
•	 for (let variable of collection) {...} iterates through the values in

an array.
•	 if (condition) {...} else {...} conditionally executes some code.
•	 false, 0, the empty string, null, and undefined are false; everything else is

true.
•	 Use back quotes and ${...} to interpolate values into strings.
• An object is a collection of name/value pairs written in {...}.

• object[key] or object.key gets a value from an object.

•	 Functions are objects that can be assigned to variables, stored in lists, etc.
•	 function name(...parameters...) {...body...} is the old way to define

a function.
•	 name = (...parameters...) => {...body...} is the new way to define a

function.
•	 Use return inside a function body to return a value at any point.
•	 Use modules to divide code between multiple files for re-use.
•	 Assign to module.exports to specify what a module exports.
•	 require(...path...) imports a module.
•	 Paths beginning with ‘.’ or ‘/’ are imported locally, but paths without ‘.’ or ‘/’ look

in the library.

193

194 JavaScript for Data Science

CALLBACKS

•	 JavaScript stores the instructions making up a function in memory like any other
object.

•	 Function objects can be assigned to variables, put in lists, passed as arguments to
other functions, etc.

•	 Functions can be defined in place without ever being given a name.
•	 A callback function is one that is passed in to another function for it to execute at

a particular moment.
•	 Functional programming uses higher-order functions on immutable data.
•	 Array.some is true if any element in an array passes a test, while Array.every

is true if they all do.
•	 Array.filter selects elements of an array that pass a test.
•	 Array.map creates a new array by transforming values in an existing one.
•	 Array.reduce reduces an array to a single value.
•	 A closure is a set of variables captured during the definition of a function.

OBJECTS AND CLASSES

•	 Create classes to define combinations of data and behavior.
•	 Use the class’s constructor to initialize objects.
•	 this refers to the current object.
•	 Use polymorphism to express common behavior patterns.
•	 Extend existing classes to create new ones-sometimes.
•	 Override methods to change or extend their behavior.

HTML AND CSS

•	 HTML is the latest in a long line of markup languages.
•	 HTML documents contain elements (represented by tags in angle brackets) and

text.
•	 Elements must be strictly nested.
•	 Elements can contain attributes.
•	 Use escape sequences beginning with ampersand to represent special characters.
•	 Every page should have one html element containing a head and a body.
•	 Use <!--...--> to include comments in HTML.
•	 Use ul and ol for unordered and ordered lists, and li for list elements.
•	 Use table for tables, tr for rows, th for headings, and td for regular data.
•	 Use ... to create links.
•	 Use to include images.
•	 Use CSS to define appearance of elements.
•	 Use class and id to identify elements.
•	 Use selectors to specify the elements that CSS applies to.

Key Points 195

MANIPULATING PAGES

•	 Use a meta tag in a page’s header to specify the page’s character encoding.
•	 Pages are represented in memory using a Document Object Model (DOM).
•	 The document object represents the page a script is in.
•	 Use the querySelectorAll method to find DOM nodes that match a condition.
•	 Assign HTML text to a node’s innerHTML property to change the node’s content.
•	 Use ((params) => {...})(arguments) to create and call a function in a sin­

gle step.
•	 An event listener is a function run by the browser when some specific event oc­

curs.
•	 Create an event listener for ’DOMContentLoaded’ to trigger execution of scripts

after the DOM has been constructed.
•	 Check the nodeType or nodeName property of a DOM node to find out what kind

of node it is.
•	 Destructuring assignment allows us to assign to multiple variables by name in a

single statement.
•	 Use setTimeout to trigger execution of a function after a delay.
•	 To make something run forever, have the function called by setTimeout set an­

other timeout of the same function.

DYNAMIC PAGES

•	 Older dynamic web sites generated pages on the server.
•	 Newer dynamic web sites generate pages in the client.
•	 React is a JavaScript library for client-side page generation that represents HTML

elements as function calls.
•	 React replaces page elements with dynamically-generated content in memory (not

on disk).
•	 React functions can be customized with elements.
•	 JSX translates HTML into React function calls so that HTML and JavaScript can

be mixed freely.
•	 Use Babel to translate JSX into JavaScript in the browser.
•	 Define new React components with a pseudo-HTML element and a corresponding

function.
•	 Attributes to pseudo-HTML are passed to the JavaScript function as a props

object.

VISUALIZING DATA

•	 Vega-Lite is a simple way to build common visualizations.
•	 Vega-Lite is declarative: the user creates a data structure describing what they

want, and the library creates the visualization.
•	 A Vega-Lite specification contains a schema identifier, a description, data, marks,

and encodings.

196 JavaScript for Data Science

•	 The overall layout of a Vega-Lite visualization can be controlled by setting op­
tions.

•	 Some applications will use require for server-side code and import for client-
side code.

PROMISES

•	 JavaScript keeps an execution queue for delayed computations.
•	 Use promises to manage delayed computation instead of raw callbacks.
•	 Use a callback with two arguments to handle successful completion (resolve) and

unsuccessful completion (reject) of a promise.
•	 Use then to express the next step after successful completion and catch to handle

errors.
•	 Use Promise.all to wait for all promises in a list to complete and
Promise.race to wait for the first promise in a set to complete.

•	 Use await to wait for the result of a computation.
•	 Mark functions that can be waited on with async.

INTERACTIVE SITES

•	 Define event handlers to specify what actions the browser should take when the
user interacts with an application.

•	 The browser passes event objects containing details of events to event handlers.
•	 Use classes to keep state and event handlers together.
•	 React calls a class’s render to display it.
•	 Separate models (which store data) from views (which display it).
•	 Use fetch to get data from servers.
•	 Use destructuring to get individual members from an object in a single step.
•	 Modern JavaScript uses promises to manage asynchronous activities.

MANAGING DATA

•	 Small tabular datasets are commonly stored as Comma-Separated Values (CSV).
•	 CSV can only represent regular data, and CSV files usually don’t include units.
•	 Nested data is commonly stored using JavaScript Object Notation (JSON).
•	 JSON representations of tabular data often include redundant (and therefore pos­

sibly inconsistent) specifications of column names.
•	 PapaParse is a robust CSV parsing library that produces JSON output.

CREATING A SERVER

•	 An HTTP request or response consists of a plain-text header and an optional body.
•	 HTTP is a stateless protocol.
•	 Express provides a simple path-based JavaScript server.
•	 Write callback functions to handle requests matching specified paths.

Key Points	 197

•	 Provide a default handler for unrecognized requests.
•	 Use Content-Type to specify the type of data being returned.
•	 Use dynamic loading to support plugin extensions.

TESTING

•	 A unit test checks the behavior of one software component in isolation.
•	 The result of a unit test can be pass, fail, or error.
•	 Use Mocha to write and run unit tests in JavaScript.
•	 Put assertions in unit tests to check results.
•	 Combine tests in suites for easier management.
•	 Divide modules into interactive and non-interactive parts for easier testing.
•	 Use supertest to simulate interaction with a server for testing.
•	 HTML is represented in memory using the Document Object Model (DOM).
•	 Check the structure of the DOM rather than the textual representation of the

HTML when testing.

USING DATA-FORGE

•	 Create a DataFrame from an array of objects with identical keys, from a spec with
columnNames and rows fields, or by parsing text that contains CSV or JSON.

•	 If you’re using a loop on a dataframe, you’re doing the wrong thing.
•	 Use method chaining to create pipelines that filter data and create new values from

old.
•	 Use grouping and aggregation to summarize data.

CAPSTONE PROJECT

•	 Use slices of actual data to test applications.
•	 Test summaries and small cases so that results can be checked by hand.
•	 Store state in a class, use pure functions to display it.

FINALE

•	 We have learned a lot.
•	 Contributions are very welcome.

http://taylorandfrancis.com

F Collaborating

A project can survive badly-organized code; none will survive for long if people
are confused, pulling in different directions, or hostile. This appendix therefore talks
about what projects can do to make newcomers feel welcome and to make things run
smoothly after that.

It may seem strange to include this material in a tutorial on JavaScript, but as Free­
man pointed out in [Free1972], every group has a power structure; the only question
is whether it is formal and accountable or informal and unaccountable. Thirty-five
years after the free software movement took on its modern, self-aware form, its suc­
cesses and failures have shown that if a project doesn’t clearly state who has the right
to do what, it will wind up being run by whoever argues loudest and longest. For a
much deeper discussion of these issues, see [Foge2005].

F.1 LICENSING SOFTWARE

If the law or a publication agreement prevents people from reading your work or
using your software, you’re probably hurting your own career. You may need to do
this in order to respect personal or commercial confidentiality, but the first and most
important rule of inclusivity is to be open by default.

That is easier said than done, not least because the law hasn’t kept up with every­
day practice. [Mori2012] and this blog post1 are good starting points from a scien­
tist’s point of view, while [Lind2008] is a deeper dive for those who want details.
In brief, creative works are automatically eligible for intellectual property (and thus
copyright) protection. This means that every creative work has some sort of license:
the only question is whether authors and users know what it is.

Every project should therefore include an explicit license. This license should be
chosen early: if you don’t set it up right at the start, then each collaborator will
hold copyright on their work and will need to be asked for approval when a li­
cense is chosen. By convention, the license is usually put in a file called LICENSE
or LICENSE.txt in the project’s root directory. This file should clearly state the li­
cense(s) under which the content is being made available; the plural is used because
code, data, and text may be covered by different licenses.

Don’t Write Your Own License
Not even if you are a lawyer: legalese is a highly technical language, and
words don’t mean what you think they do.

To make license selection as easy as possible, GitHub allows you to select one of
the most common licenses when creating a repository. The Open Source Initiative

1http://www.astrobetter.com/blog/2014/03/10/the-whys-and-hows-of-licensing-scientific-code/

199

http://www.astrobetter.com

200 JavaScript for Data Science

maintains a list of licenses2, and choosealicense.com3 will help you find a license
that suits your needs. Some of the things you will need to think about are:

1. Do you want to license the code at all?
2. Is the content you are licensing source code?
3. Do you require people distributing derivative works to also distribute their code?
4. Do you want to address patent rights?
5. Is your license compatible with the licenses of the software you depend on? For

example, as we will discuss below, you can use MIT-licensed code in a GPL-
licensed project but not vice versa.

The two most popular licenses for software are the MIT license and the GNU
Public License (GPL). The MIT license (and its close sibling the BSD license) say
that people can do whatever they want to with the software as long as they cite the
original source, and that the authors accept no responsibility if things go wrong. The
GPL gives people similar rights, but requires them to share their own work on the
same terms:

You may copy, distribute and modify the software as long as you track
changes/dates in source files. Any modifications to or software including (via
compiler) GPL-licensed code must also be made available under the GPL
along with build & install instructions.
— tl;dr4

We recommend the MIT license: it places the fewest restrictions on future action,
it can be made stricter later on, and the last thirty years show that it’s good enough
to keep work open.

F.2 LICENSING DATA AND DOCUMENTATION

The MIT license and the GPL apply to software. When it comes to data and reports,
the most widely used family of licenses are those produced by Creative Commons5,
which have been written and checked by lawyers and are well understood by the
community.

The most liberal license is referred to as CC-0, where the “0” stands for “zero
restrictions”. CC-0 puts work in the public domain, i.e., allows anyone who wants to
use it to do so however they want with no restrictions. This is usually the best choice
for data, since it simplifies aggregate analysis. For example, if you choose a license
for data that requires people to cite their source, then anyone who uses that data in

2http://opensource.org/licenses

3http://choosealicense.com/

4https://tldrlegal.com/license/gnu-general-public-license-v3-(gpl-3)

5https://creativecommons.org/

http://www.choosealicense.com
https://creativecommons.org
https://tldrlegal.com
http://choosealicense.com
http://opensource.org

Collaborating	 201

an analysis must cite you; so must anyone who cites their results, and so on, which
quickly becomes unwieldy.

The next most common license is the Creative Commons–Attribution license,
usually referred to as CC-BY. This allows people to do whatever they want to with
the work as long as they cite the original source. This is the best license to use for
manuscripts, since you want people to share them widely but also want to get credit
for your work.

Other Creative Commons licenses incorporate various restrictions on specific use
cases:

•	 ND (no derivative works) prevents people from creating modified versions of your
work. Unfortunately, this also inhibits translation and reformatting.

•	 NC (no commercial use) does not mean that people cannot charge money for
something that includes your work, though some publishers still try to imply that
in order to scare people away from open licensing. Instead, the NC clause means
that people cannot charge for something that uses your work without your explicit
permission, which you can give under whatever terms you want.

•	 Finally, SA (share-alike) requires people to share work that incorporates yours on
the same terms that you used. Again, this is fine in principle, but in practice makes
aggregation a headache.

F.3 CODE OF CONDUCT

You don’t expect to have a fire, but every large building or event should have a fire
safety plan. Similarly, having a Code of Conduct like Appendix B for your project
reduces the uncertainty that participants face about what is acceptable and unac­
ceptable behavior. You might think this is obvious, but long experience shows that
articulating it clearly and concisely reduces problems caused by having different ex­
pectations, particularly when people from very different cultural backgrounds are
trying to collaborate. An explicit Code of Conduct is particularly helpful for new­
comers, so having one can help your project grow and encourage people to give you
feedback.

Having a Code of Conduct is particularly important for people from marginalized
or under-represented groups, who have probably experienced harassment or unwel­
coming behavior before. By adopting one, you signal that your project is trying to
be a better place than YouTube, Twitter, and other online cesspools. Some people
may push back claiming that it’s unnecessary, or that it infringes freedom of speech,
but in our experience, what they often mean is that thinking about how they might
have benefited from past inequity makes them feel uncomfortable, or that they like
to argue for the sake of arguing. If having a Code of Conduct leads to them going
elsewhere, that will probably make your project run more smoothly.

Just as you shouldn’t write your own license for a project, you probably shouldn’t
write your own Code of Conduct. We recommend using the Contributor Covenant6

6https://www.contributor-covenant.org

http://www.contributor-covenant.org

202 JavaScript for Data Science

for development projects and the model code of conduct7 from the Geek Feminism
Wiki8 for in-person events. Both have been thought through carefully and revised in
the light of experience, and both are now used widely enough that many potential
participants in your project will not need to have them explained.

Rules are meaningless if they aren’t enforced. If you adopt a Code of Conduct, it is
therefore important to be clear about how to report issues and who will handle them.
[Auro2018] is a short, practical guide to handling incidents; like the Contributor
Covenant and the model code of conduct, it’s better to start with something that
other people have thought through and refined than to try to create something from
scratch.

F.4 GOVERNANCE

If your project involves more than half a dozen people, you should be explicit about
the way decisions are made. We recommend Martha’s Rules [Mina1986]:

1. Before each meeting, anyone who wishes may sponsor a proposal. Proposals must
be circulated at least 24 hours before a meeting in order to be considered at that
meeting, and must include:

• a one-line summary (the subject line of the issue);
• the full text of the proposal;
• any required background information;
• pros and cons; and
• possible alternatives.

2. A quorum is established in a meeting if half or more of voting members are
present.

3. Once a person has sponsored a proposal, they are responsible for it. The group
may not discuss or vote on the issue unless the sponsor or their delegate is present.
The sponsor is also responsible for presenting the item to the group.

4. After the sponsor presents the proposal, a sense vote is cast for the proposal prior
to any discussion:

• Who likes the proposal?
• Who can live with the proposal?
• Who is uncomfortable with the proposal?

5. If all or most of the group likes or can live with the proposal, it is immediately
moved to a formal vote with no further discussion.

6. If most of the group is uncomfortable with the proposal, it is postponed for further
rework by the sponsor.

7http://geekfeminism.wikia.com/wiki/Conference_anti-harassment/Policy
8http://geekfeminism.wikia.com/

http://geekfeminism.wikia.com
http://geekfeminism.wikia.com

Collaborating 203

7. If some members are uncomfortable they can briefly state their objections. A timer
is then set for a brief discussion moderated by the facilitator. After 10 minutes or
when no one has anything further to add (whichever comes first), the facilitator
calls for a yes-or-no vote on the question: “Should we implement this decision
over the stated objections?” If a majority votes "yes" the proposal is implemented.
Otherwise, the proposal is returned to the sponsor for further work.

http://taylorandfrancis.com

G Legacy JavaScript Issues

JavaScript is now twenty-five years old, and like many twenty-somethings, it is still
struggling with issues from its childhood. This appendix explores three of them.

G.1 EQUALITY

Gary Bernhardt’s lightning talk from 20121 may be the most-watched presentation
on JavaScript ever. In it, he rattles through some truths about the language that may
surprise you (Table G.1).

Operation Code Result

empty array plus empty array [] + [] "" (empty string)

empty array plus empty object [] + {} {} (empty object)

empty object plus empty array {} + [] 0 (number zero)

empty object plus empty object {} + {} NaN (not a number)

Table G.1: Surprising Results

In order to understand this, we need to know several things (which are laid out in
more detail in this article2 by Abhinav Suri):

1. Arrays are objects whose keys happen to be sequential integers.
2. When JavaScript tries to add things that aren’t numbers, it tries to convert them to

numbers, and if that doesn’t work, to strings (because it can always concatenate
strings).

3. To convert an array to a string, JavaScript converts the elements to strings and
concatenates them. If the array is empty, the result is an empty string.

4. When converting an object to a string, JavaScript produces [object CLASS],
where CLASS is the name of the object’s class.

5. {} can be interpreted as either an empty object or an empty block of code.

So:

•	 Empty array plus empty array becomes empty string plus empty string.
•	 Empty array plus empty object becomes empty string plus [object Object]

(because the class of an empty object is just Object).

1https://www.destroyallsoftware.com/talks/wat
2https://medium.com/dailyjs/the-why-behind-the-wat-an-explanation-of-javascripts-weird-type-system­
83b92879a8db

205

https://medium.com
https://medium.com
https://www.destroyallsoftware.com

206	 JavaScript for Data Science

•	 {} + [] is “an empty block of code producing nothing, followed by +[]”, which
becomes “+ of the numeric value of the string value of an empty array”, which
becomes “+ of 0”.

•	 Empty object plus empty object is interpreted as an empty object plus an empty
block of code, and since an empty block of code doesn’t produce a result, its
“value” is NaN (not a number).

This is one of many cases in programming (and real life) where doing something
that’s convenient in a simple case produces confusion in less common cases. Every
language except Canadian English has warts like these.

G.2 ITERATION

We wrote above that arrays are objects. This led to some undesirable behavior with
JavaScript’s original for loop, which used the word in rather than of, and which
looped over all of an object’s enumerable keys:

const things = ['x', 'y', 'z']
things.someProperty = 'someValue'

for (let key in things) {
console.log(key)

}

0
1
2
someProperty

That phrase “enumerable keys” conceals some strangeness of its own, but in brief,
a for-in loop will loop over keys inherited from the object’s parents as well as
those defined in the object itself. Since this is usually not what programmers want
(especially for arrays), older code often used a C-style loop:

for (let i = 0; i < things.length; i += 1) {
console.log(i)

}

0
1
2

Today’s solution is to use for-of to get the values from an array, which is usually
what we want:

for (let key of things) {
console.log(key)

}

Legacy JavaScript Issues 207

x
y
z

Better yet, use forEach and take advantage of its optional second and third argu­
ments:

things.forEach((val, loc, array) => {
console.log(�element ${loc} of ${array} is ${val}�)

})

element 0 of x,y,z is x
element 1 of x,y,z is y
element 2 of x,y,z is z

G.3 PROTOTYPES

We come finally to an aspect of JavaScript that has been the cause of a great deal of
confusion: prototypes. Every JavaScript object has an internal property called its pro­
totype. If you try to access some property of an object and it’s not found, JavaScript
automatically looks in the object that the first object’s prototype refers to. If the de­
sired property isn’t there, JavaScript looks in the prototype object’s prototype, and
so on.

So where do prototypes come from? If an object is created with new
Something(), and the function Something has a property called prototype, then
the new object’s prototype is set to the object to which that prototype property
points.

This will all make sense with an example and a diagram. Let’s create an object
to store the default properties of ice cream cones, then create a function Cone that
creates an actual cone:

const iceCream = {
size: 'large'

}

const Cone = function(f) {
this.flavor = f

}

Cone.prototype = iceCream

We can now create a cone and look at its properties (Figure G.1):

const dessert = new Cone('mustard')

console.log(�flavor "${dessert.flavor}" size "${dessert.size}"�)

flavor "mustard" size "large"

If we change the size of our dessert, lookup finds the object’s property before
looking up the chain to find the parent object’s:

208 JavaScript for Data Science

Variables Values

iceCream

Cone

"large"size

...instructions...

prototype:

dessert flavor: "mustard"

prototype:

Figure G.1: Prototypes

dessert.size = 'extra-large'

console.log(�new flavor "${dessert.flavor}" size "${dessert.size}"�)

new flavor "mustard" size "extra-large"

Prototypes are a way to implement inheritance for object-oriented programming;
the problem is that the mechanics are rather clumsy, and very different from what
most programmers are used to, so people built a variety of layers on top of prototypes.
To make things even more confusing, this can behave in some rather odd ways, and
again, people built layers to try to insulate themselves from those oddities. Prototypes
still have their fans, but most people find modern JavaScript’s classes easier to use.

H Regular Expressions

A regular expression is a pattern for matching text. Most languages implement them
in libraries, but they are built into JavaScript, and are written using / before and after
a string rather than single or double quotes.

•	 Letters and digits match themselves, so the regular expression /enjoy/ matches
the word “enjoy” wherever it appears in a string.

•	 A dot matches any character, so /../ matches any two consecutive characters
and /en..y/ matches “enjoy”, “gently”, and “brightens your day”.

•	 The asterisk * means “match zero or more occurrences of what comes immedi­
ately before”, so en* matches “ten” and “penny”. It also matches “feet” (which
has an “e” followed by zero occurrences of “n”).

•	 The plus sign + means “match one or more occurrences of what comes immedi­
ately before”, so en+ still matches “ten” and “penny” but doesn’t match “feet”
(because there isn’t an “n”).

•	 Parentheses create groups just as they do in mathematics, so (an)+ matches “ba­
nana” but not “annual”.

•	 The pipe character | means “either/or”, so b|c matches either a single “b” or a
single “c”, and (either)|(or) matches either “either” or “or”. (The parentheses
are necessary because either|or matches “eitherr” or “eitheor”.)

•	 The shorthand notation [a-z] means “all the characters in a range”, and is easier
to write and read than a|b|c|...|y|z.

•	 The characters ^ and $ are called anchors: they match the beginning and end of
the line without matching any actual characters.

•	 If we want to put a special character like ., *, +, or | in a regular expression, we
have to escape it with a backslash \. This means that /stop\./ only matches
“stop.”, while stop. matches “stops” as well.

Text	 Pattern Match Explanation
abc	 /b/ yes character matches itself

/b*/ yes matches zero or more b’s
/z*/ yes text contains zero z’s, so pattern matches
/z+/ no text does not contain one or more z’s
/a.c/ yes ’.’ matches the ’b’
/^b/ no text does not start with ’b’

abc123	 /[a-z]+/ yes contains one or more consecutive
lower-case letters

/^[a-z]+$/ no digits in string prevent a match
/^[a-z0-9]+$/ yes whole string is lower-letters or digits

Dr. Toby /(Dr|Prof)\./ yes	 contains either “Dr” or “Prof” followed
by literal ’.’

Table H.1: Regular Expression Matches
209

210 JavaScript for Data Science

This is a lot to digest, so Table H.1 shows a few examples. Regular expressions
can match an intimidating number of other patterns, but are fairly easy to use in pro­
grams. Like strings and arrays, they are objects with methods: if pattern is a regular
expression, then string.test(pattern) returns true if the pattern matches the
string and false if it does not, while string.match(pattern) returns an array of
matching substrings. If we add the modifier “g” after the closing slash of the regular
expression to make it “global”, then string.match(pattern) returns all of the
matching substrings:

Tests = [
'Jamie: james@geneinfo.org',
'Zara: zetsure@bio123.edu',
'Hong and Andrzej: hchui@euphoric.edu and aszego@euphoric.edu'

]

const pattern = /[a-z]+@[a-z]+\.[a-z]+/g

console.log(�pattern is ${pattern}�)
for (let test of Tests) {
console.log(�tested against ${test}�)
const matches = test.match(pattern)
if (matches === null) {
console.log('-no matches-')

}
else {
for (let m of matches) {
console.log(m)

}
}

}

pattern is /[a-z]+@[a-z]+\.[a-z]+/g

tested against Jamie: james@geneinfo.org
james@geneinfo.org

tested against Zara: zetsure@bio123.edu
-no matches-

tested against Hong and Andrzej: hchui@euphoric.edu and aszego@euphoric.edu
hchui@euphoric.edu
aszego@euphoric.edu

As powerful as they are, there are things that regular expressions can’t do1. When
it comes to pulling information out of text, though, they are easier to use and more ef­
ficient than long chains of substring tests. They can also be used to replace substrings
and to split strings into pieces: please see the documentation2 for more information.

1https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained­
tags/1732454#1732454

2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

https://developer.mozilla.org
https://stackoverflow.com
https://stackoverflow.com

I Logging

The console.log function we have been using is a simple form of logging. We
can use a library called Winston1 to get more control and structure. By control, we
mean that we can define levels for messages and a threshold for the logger, and
only log things that are at least that important. This is much better than commenting
and uncommenting messages, both because it involves less typing and because we
can leave the logging code in place when we put our application into production to
debug the problems that inevitably arise after we thought we were done. The stan­
dard error levels provided by Winston (and similar logging libraries) are ’error’,
’warn’, ’info’, ’verbose’, and ’debug’, so if we set the threshold to ’info’,
then ’verbose’ and ’debug’ messages won’t be displayed.

As for structure, Winston produces log messages as JSON objects by default so
that other programs can easily read them. We can also configure it to produce CSV, or
even define some custom format, though doing that will make everyone’s life more
difficult.

Whatever format we choose, we have to create and add a transport to tell Winston
where messages should go. We will use one called Console that sends messages to
the screen; we can also send messages to files, to remote logging servers, and so on.
Note that we do not create a variable called console for the transport, because that
will overwrite the console we have been using up until now, and yes, that took a
couple of minutes to figure out. . .

const express = require('express')

const path = require('path')

const fs = require('fs')

const winston = require('winston')

const PORT = 3418

const root = process.argv[2]

const level = process.argv[3]

const transport = new winston.transports.Console()

winston.add(transport)

winston.level = level

// Main server object.
const app = express()

// Handle all requests.
app.use((req, res, next) => {
const actual = path.join(root, req.url)
fs.stat(actual, (err, stats) => {
if (err) {

1https://github.com/winstonjs/winston

211

https://github.com

212 JavaScript for Data Science

winston.error(�Unable to find "${actual}"�)

res.status(404).send(

�<html><body><p>cannot read ${actual}</p></body></html>�)

}	 else if (!stats.isFile()) {

winston.error(�"${actual}" is not a file�)

res.status(404).send(

�<html><body><p>cannot read ${actual}</p></body></html>�)

}	 else {

winston.debug(�Serving "${actual}"�)

fs.readFile(actual, 'utf-8', (err, data) => {

res.status(200).send(data)

})
}

})
})

app.listen(PORT, () => {
winston.info(�Running on port ${PORT} with root ${root}�)

})

In the script above, we set the logging level with an extra command-line parame­
ter. If we run the script with the ’debug’ level, all messages appear. If we run it with
the ’info’ level, the startup message and the 404 error messages appear, and if we
run it with the level ’error’ only the latter appear.

$ node src/logging/logging-server.js src/logging/web-dir/ info

{"message":"Running on port 3418 with root src/logging/web-dir/",
"level":"info"}
{"message":"Unable to find \"src/logging/web-dir/missing.html\"",
"level":"error"}

J Extensible Servers

Suppose we want to extend the server from Chapter 12 in some way. We could edit
the source file and add some more URL handlers, or we could have it load JavaScript
dynamically and run that.

const express = require('express')

const PORT = 3418

// Main server object.
const app = express()

// Handle all requests.
app.use((req, res, next) => {
if (req.url.endsWith('.js')) {

const libName = './'.concat(req.url.slice(0, -3))

const dynamic = require(libName)

const data = dynamic.page()

res.status(200).send(data)

}

else {
res.status(404).send(
�<html><body><p>"${req.url}" not found</p></body></html>�)

}
})

app.listen(PORT, () => { console.log(�listening on port ${PORT}...�) })

This simple server checks whether the path specified in the URL ends with .js.
If so, it constructs something that looks like the name of a library by stripping off the
.js and prefixing the stem with ./, then uses require to load that file. Assuming
the load is successful, it then calls the page function defined in that file. We can
create a very simple plugin like this:

function page() {
return ('<html><body><h1>Plugin Content</h1></body></html>');

}

module.exports = {
page: page

}

If we run the server:

$ node src/extensible/dynamic.js

and then go to http://localhost:4000/plugin.js, we get back a page contain­
ing the title “Plugin Content”.

213

214 JavaScript for Data Science

This is an example of a very powerful technique. Rather than building everything
into one program, we can provide a set of rules that plugins must follow so that
people can add new functionality without rewriting what’s already there. Each plugin
must have an entry point like the function page so that the framework knows where
to start.

K Using a Database

Our data manager (Chapter 11) got information from a single CSV file. That’s fine
for testing purposes, but real applications almost always use a database of some kind.
There are many options these days for what kind, but relational databases continue
to be the workhorses of the web.

Relational databases are manipulated using a language called SQL, which orig­
inally stood for “Structured Query Language” and is pronounced “sequel” or “ess
cue ell” depending on whether the speaker is left or right handed. (Alternatives are
collectively known as NoSQL databases, and use many different storage models.)
We will use a SQL database because it’s still the most common choice, but we won’t
try to introduce SQL itself: for that, see this short tutorial1.

As an example problem, we will store information about workshops. Our database
begins with a single table with three fields and two records:

drop table if exists Workshop;

create table Workshop(
ident integer unique not null primary key,
name text unique not null,
duration integer not null -- duration in minutes

);

insert into Workshop values(1, "Building Community", 60);
insert into Workshop values(2, "ENIAC Programming", 150);

In the rest of this tutorial, we will build a class to handle our interactions with a
SQLite database, test it, and then put a web service on top of it.

K.1 STARTING POINT

Our class, imaginatively named Database, takes the path to the SQLite database
file as a constructor parameter and creates a connection manager through which we
can send queries and get results. We will create one method for each query we want
to run, and one helper method to display query results. We will give all of the query
methods the same signature so that can be handled interchangeably. The whole thing
looks like this:

const sqlite3 = require('sqlite3')

class Database {

constructor (path) {

1https://swcarpentry.github.io/sql-novice-survey/

215

https://swcarpentry.github.io

�

�

216 JavaScript for Data Science

this.db = new sqlite3.Database(path, sqlite3.OPEN_READWRITE, (err) => {

if (err) this.fail(�Database open error ${err} for "${path}"�)

})

}

getAll (args) {
this.db.all(Q_WORKSHOP_GET_ALL, [], (err, rows) => {

if (err) this.fail(err)

this.display(rows)

})

}

getOne (args) {
this.db.all(Q_WORKSHOP_GET_ONE, args, (err, rows) => {

if (err) this.fail(err)

this.display(rows)

})

}

display (rows) {

for (let r of rows) {

console.log(r)

}

}

fail (msg) {

console.log(msg)

process.exit(1)

}
}

This makes a lot more sense once we see what the queries look like:

const Q_WORKSHOP_GET_ALL = �
select
Workshop.ident as workshopId,
Workshop.name as workshopName,
Workshop.duration as workshopDuration

from
Workshop

const Q_WORKSHOP_GET_ONE = �
select
Workshop.ident as workshopId,
Workshop.name as workshopName,
Workshop.duration as workshopDuration

from
Workshop

where
Workshop.ident = ?

It’s easy to overlook, but the query to get details of one workshop has a question
mark ? as the value of Workshop.ident. This means that the query expects us to

Using a Database 217

provide a parameter when we call it that will be substituted in for the question mark
to specify which workshop we’re interested in. This is why the arguments passed to
getOne as args are then passed through to db.all; it’s also why getAll takes an
args parameter, but ignores it and always passed [] (no extra values) to db.all
when running the query.

All right: what does the driver look like?

function main () {
const path = process.argv[2]
const action = process.argv[3]
const args = process.argv.splice(4)
const database = new Database(path)
database[action](args)

}

main()

This is simple enough: it gets the path to the database file, the desired ac­
tion, and any extra arguments from process.argv, then creates an instance of
the Database class and—um. And then it calls database[action](args), which
takes a moment to figure out. What’s going on here is that an instance of a class
is just a special kind of object, and we can always look up an object’s fields by
name using object[name], so if the string action (taken from the command-
line argument) is getAll or getOne, then database[action](args) is either
database.getAll(args) or database.getOne(args). This is clever, but if we
ask for an action like show or help or GetOne (with an upper-case ’G’) then
database[action] doesn’t exist and we get a very confusing error message. We
really should try to do better. . .

But before then, let’s try running this:

$ node database-initial.js fixture.db getAll

{ workshopId: 1,
workshopName: 'Building Community',
workshopDuration: 60 }

{ workshopId: 2,
workshopName: 'ENIAC Programming',
workshopDuration: 150 }

That seems to have worked: getAll was called, and the result is an array of objects,
one per record, whose names are derived in an obvious way from the names of the
columns.

K.2 IN-MEMORY DATABASE

The previous example always manipulates database on disk. For testing purposes,
it’s faster and safer to use an in-memory database. Let’s modify the constructor of
Database to set this up:

218 JavaScript for Data Science

constructor (mode, path) {

this.path = path

switch (mode) {

case 'memory' :

const setup = fs.readFileSync(this.path, 'utf-8')
this.db = new sqlite3.Database(':memory:', sqlite3.OPEN_READWRITE,
(err) => {
if (err) {
this.fail(�In-memory database open error "${err}"�)

}

})

this.db.exec(setup,(err) => {

if (err) {
this.fail(�Cannot initialize in-memory database from "${this.path}"�)

}
})
break

case 'file' :

this.db = new sqlite3.Database(this.path, sqlite3.OPEN_READWRITE,

(err) => {

if (err) {

this.fail(�Database open error ${err} for "${path}"�)

}

})

break

default :

this.fail(�Unknown mode "${mode}"�)

break

}

}

If the mode parameter is the string "memory", we create an in-memory database
and initialize it by executing a file full of setup commands specified by the user—in
our case, exactly the commands we showed at the start of the lesson. If the mode
is "file", we interpret the file argument as the name of an on-disk database and
proceed as before.

We put our error messages in ALL CAPS because that’s the most annoying option
easily available to us. Less annoyingly, we can use destructuring to handle command-
line arguments in the driver:

function main () {
const [mode, path, action, ...args] = process.argv.splice(2)
const database = new Database(mode, path)
database[action](args)

}

Here, the expression ...args means “take anything left over after the fixed
names have been matched and put it in an array called args”. With these changes in
place, we can run a query to get details of the second workshop like this:

$ node database-mode.js memory fixture.sql getOne 2

219 Using a Database

{ workshopId: 2,
workshopName: 'ENIAC Programming',
workshopDuration: 150 }

After a bit of experimentation, we decide to take this even further to make test­
ing easier. We will allow the driver to read the SQL script itself and pass that into
Database so that we can do the file I/O once and then repeatedly build a database
in memory for testing. That way, each of our tests will start with the database in
a known, predictable state, regardless of what other tests may have run before and
what changes they might have made to the database. Here are the changes to the
constructor:

constructor (mode, arg) {

switch (mode) {

case 'direct' :

this._inMemory(arg)

break

case 'memory' :

const setup = fs.readFileSync(arg, 'utf-8')

this._inMemory(setup)

break

case 'file' :

this._inFile(arg)

break

default :

this.fail(�Unknown mode "${mode}"�)

break

}

}

And here are the supporting methods:

_inMemory (script) {

this.db = new sqlite3.Database(':memory:', sqlite3.OPEN_READWRITE,

(err) => {

if (err) {

this.fail(�In-memory database open error "${err}"�)

}

})

this.db.exec(script,

(err) => {
if (err) {
this.fail(�Unable to initialize in-memory database from "${script}"�)

}
})

}

_inFile (path) {

this.db = new sqlite3.Database(path, sqlite3.OPEN_READWRITE, (err) => {

if (err) this.fail(�Database open error "${err}" for "${path}"�)

})

}

220 JavaScript for Data Science

We also need to change the driver (and check, finally, that the requested action is
actually supported):

function main () {
let [mode, setup, action, ...args] = process.argv.splice(2)
if (mode === 'direct') {
setup = fs.readFileSync(setup, 'utf-8')

}

const database = new Database(mode, setup)

if (!(action in database)) {

database.fail(�No such operation "${action}"�)

}

database[action](args)

}

K.3 MAKING IT TESTABLE

We put the database class and its driver in separate files so that applications can load
just the former. We will now change the database query methods to return results
for display rather than displaying them directly, since we will eventually want to
compare them or return them to a server rather than printing them:

class Database {

// ...as before...

getAll (args) {
this.db.all(Q_WORKSHOP_GET_ALL, [], (err, rows) => {

if (err) this.fail(err)

return rows

})

}

// ...as before...
}

The driver then looks like this:

const Database = require('./separate-database')

const display = (rows) => {
for (let r of rows) {
console.log(r)

}
}

const main = () => {
let [mode, path, action, ...args] = process.argv.splice(2)
const db = new Database(mode, path)
if (!(action in db)) {
db.fail(�No such operation "${action}"�)

}

const result = db[action](args)

221 Using a Database

display(result)
}

main()

Let’s try running it:

$ node separate-driver.js file fixture.db getAll

for (let r of rows) {

^

TypeError: Cannot read property 'Symbol(Symbol.iterator)' of undefined
at display (/project/src/db/separate-driver.js:4:15)
at main (/project/src/db/separate-driver.js:16:3)

Whoops: the run method of the database delivers results to a callback; its own
result is therefore undefined, so there’s nothing in the caller to print. The solution
is to give the get methods a callback of their own:

class Database {

// ...as before...

getAll (args, callback) {
this.db.all(Q_WORKSHOP_GET_ALL, [], (err, rows) => {

if (err) this.fail(err)

callback(rows)

})

}

// ...as before...
}

We then change the driver to pass display to the database method it’s calling:

const Database = require('./callback-database')

const display = (rows) => {
for (let r of rows) {
console.log(r)

}
}

const main = () => {
let [mode, path, action, ...args] = process.argv.splice(2)
const db = new Database(mode, path)
if (!(action in db)) {
db.fail(�No such operation "${action}"�)

}

db[action](args, display)

}

main()

�

222 JavaScript for Data Science

This looks strange the first few (dozen) times, but it’s the way JavaScript works:
instead of asking for something and then operating on it, we say, “Here’s what we
want to do once results are available.”

K.4 TESTING

We can finally write some tests:

const assert = require('assert')

const Database = require('./callback-database')

const FIXTURE = �

drop table if exists Workshop;

create table Workshop(
ident integer unique not null primary key,
name text unique not null,
duration integer not null -- duration in minutes

);

insert into Workshop values(1, "Building Community", 60);
insert into Workshop values(2, "ENIAC Programming", 150);

describe('database', () => {

it('should return all workshops', (done) => {

expected = [

{ workshopName: 'Building Community',

workshopDuration: 60, workshopId: 1 },

{ workshopName: 'ENIAC Programming',

workshopDuration: 150, workshopId: 2 }

]

new Database('direct', FIXTURE).getAll([], (results) => {

assert.deepEqual(results, expected,

'Got expected workshops')

done()

})

})

it('should return one workshop', (done) => {

expected = [

{ workshopName: 'Building Community',

workshopDuration: 60, workshopId: 1 }

]

new Database('direct', FIXTURE).getOne(1, (results) => {

assert.deepEqual(results, expected,

'Got single expected workshop')

done()

})

})

it('can only get workshops that exist', (done) => {

new Database('direct', FIXTURE).getOne(99, (results) => {

assert.deepEqual(results, [],

�

�

Using a Database 223

'Got no workshops matching nonexistent key')

done()

})

})

})

Each test has the same structure: we define the expected result, create an entirely
new database in memory, and then call the method being tested, passing it the fixture
and the callback that will receive results. That callback uses assert to check results
and done to signal that the test has completed.

K.5 UPDATING THE DATABASE

The data manager we built in Chapter 11 only let us read data; we couldn’t modify
it. Let’s add a bit more to our database class to support mutation:

// ...imports as before...

const Q_WORKSHOP_GET_ALL = // ...as before...
const Q_WORKSHOP_GET_ONE = // ...as before...

const Q_WORKSHOP_ADD = �
insert into Workshop(name, duration) values(?, ?);

const Q_WORKSHOP_DELETE = �
delete from Workshop where ident = ?;

class Database {

constructor (mode, arg) {
// ...as before...

}

getAll (args, callback) {

// ...as before...

}

getOne (args, callback) {

// ...as before...

}

addOne (args, callback) {
this.db.run(Q_WORKSHOP_ADD, args, function (err, rows) {

if (err) this.fail(err)

callback([], this.lastID)

})

}

deleteOne (args, callback) {
this.db.run(Q_WORKSHOP_DELETE, args, (err, rows) => {

if (err) this.fail(err)

callback([], undefined)

})

224 JavaScript for Data Science

}

fail (msg) {
// ...as before...

}

_inMemory (script) {

// ...as before...

}

_inFile (path) {

// ...as before...

}
}

module.exports = Database

The additions are straightforward: the query that does the work is passed to
this.db.run along with the incoming arguments that specify what is to be added
or deleted, and an empty list of rows is passed to the action callback (since adding
and deleting don’t return anything). Testing involves a little more typing, since we
want to check that the database is in the right state after the operation:

// ...imports as before...

const FIXTURE = // ...as before...

describe('mutating database', () => {

it('can add a workshop', (done) => {

const duration = 35, name = 'Creating Bugs'

const db = new Database('direct', FIXTURE)

db.addOne([name, duration], function (results, lastID) {

assert.deepEqual(results, [], 'Got empty list as result when adding')
assert.equal(lastID, 3, 'Got the correct last ID after adding')
db.getAll([], (results) => {
expected = [

{ workshopName: 'Building Community',

workshopDuration: 60, workshopId: 1 },

{ workshopName: 'ENIAC Programming',

workshopDuration: 150, workshopId: 2 },

{ workshopName: name,

workshopDuration: duration, workshopId: 3 }

]

assert.deepEqual(results, expected,

'Got expected workshops after add')

done()

})

})

})

it('can delete a workshop', (done) => {

const db = new Database('direct', FIXTURE)

db.deleteOne([1], (results, lastID) => {

assert.equal(lastID, undefined, 'Expected last ID to be undefined')
assert.deepEqual(results, [], 'Got empty list as result when deleting')
db.getAll([], (results) => {

�

Using a Database 225

expected = [
{ workshopName: 'ENIAC Programming',
workshopDuration: 150, workshopId: 2 }

]
assert.deepEqual(results, expected,

'Got expected workshops after delete')
done()

})
})

})
})

K.6 EXERCISES

COPYING RECORDS

Write a program that copies all the rows from the table Workshop in a database
source.db to a table with the same name in a new database backup.db.

FILTERING RECORDS

Add a new method to the Database class to get all workshops that are longer than a
specified time:

const db = new Database(path)
const rows = db.getLongerThan(100)
assert.deepEqual(rows, [
{workshopName: 'ENIAC Programming', workshopDuration: 150, workshopId: 2}

])

Your Database.getLongerThan method’s SQL query will need to use a where
clause that selects specific records.

MORE FILTERING

The SQL query encapsulated in the variable below can be used to find all workshops
whose duration falls within a range.

const Q_WORKSHOP_DURATION_RANGE = �
select
Workshop.ident as workshopId,
Workshop.name as workshopName,
Workshop.duration as workshopDuration

from
Workshop

where
(Workshop.duration <= ?) and (Workshop.duration >= ?)

What do the ?s mean in this query? Write another method for the Database class
called getWithinLengthRange([args]) that uses this query, taking arguments

226 JavaScript for Data Science

from the commandline as before. What happens when you provide the wrong number
of arguments to this function? Or if you provide them in the wrong order? Can you
write a test that provides more useful feedback than this?

HANDLING ERRORS

The Database class prints a message and exits when it detects an error. This is bad
practice, and I should be ashamed of having done it. The right thing to do is to throw
an exception that the main program can catch and handle however it wants.

1. Modify the code to do this.
2. Modify the tests to check that the right exceptions are thrown when they should

be.

USING A DATABASE WITH A SERVER

Rewrite the capstone project in Chapter 15 to use a database instead of a file for data
storage.

L Deploying

Running applications on our laptop is fine for testing, but sooner or later we will
want to put them on the web for others to use. A general discussion of deployment
is outside the scope of these lessons, particularly because it shouldn’t be done without
thinking carefully about security, but there are now a few entry-level platforms you
can try out.

One of the simplest of these platforms is Glitch1, which is designed to help stu­
dents build their first interactive websites. It isn’t designed to host large, high-traffic
applications, but is great for prototyping and classroom use. To try it out, go to
https://glitch.com and create a free account. You can then click on the “New Project”
button in the upper right and select hello-express, which will create a basic Ex­
press application. This project contains a handful of files that you should find famil­
iar:

•	 README.md: a description of the project formatted in Markdown.
•	 package.json: the NPM package listing for the project.
•	 server.js: the server. This is initially set up to route requests for / to
/views/index.html, but can be made as complicated as we want. Note that
it uses a variable called __dirname (with two leading underscores) to get the
name of the directory that the server is running in; this is needed because Glitch
controls where our application runs.

•	 views/index.html: the application’s home page. We can add as many other
pages as we want, but they have to go in the views folder.

•	 public/client.js: the user interface code that is run in the browser.
The public folder acts as the root directory for the server, so inside
views/index.html and other web pages, we refer to public/client.js sim­
ply as /client.js.

•	 public/style.css: the CSS that styles the application. Again, inside
views/index.html we refer to this file as /style.css without naming the
public folder.

•	 .env: a shell script that defines any secret configuration variables the application
needs, such as passwords for databases. Unlike the files above, this one isn’t au­
tomatically copied when someone clones our application. If we define a variable
called PASSWORD in this file, then our server can get its value (as a string) using
process.env.PASSWORD. Life might have been a little simpler if Glitch’s cre­
ators had used a JSON file instead of a shell script, but as long as we stick to
simple NAME=VALUE pairs, we’ll be OK.

1https://glitch.com/

227

https://glitch.com
https://glitch.com

228 JavaScript for Data Science

Figure L.1: Glitch Deployment

Two things that aren’t automatically present are a license and a Code of Conduct,
but both can easily be added by clicking on the “New File” button. Several widely-
used open source licenses are available, and the Code of Conduct is based on one
that is also widely used in open source projects. Adding both makes it clear what we
are allowing and expecting people to do with our project.

The “Rewind” button in the bottom of the file explorer lets us view the project’s
history. Glitch uses Git to store changes, but presents those changes as a timeline so
that we can scroll backward and forward to see what was altered when. The “Tools”
button (also in the bottom of the file explorer) gives us access to run logs and perfor­
mance information, and lets us connect our project to a repository on GitHub.

Behind the scenes, every Glitch application runs in a virtual machine. Any data
that it creates or modifies (such as files on disk or SQLite databases Appendix K) are
automatically saved, up to a limit of 128 MByte. An application is allowed to handle
several thousand requests per hour; if it doesn’t receive any requests for 5 minutes,
the virtual machine is put to sleep. It is automatically restarted the next time a request
comes in, but there will be a lag as it wakes up.

Index

absolute path, 49

accessibility (in HTML page), 49

aggregation functions, 82, 119

alias, 20

anonymous function, 24

Application Programming Interface, 131

argument, 10

array

length, 8

nested, 7

array methods

every, 25

filter, 26

forEach, 30

map, 26

reduce, 26

some, 25

assertion, 133

async, 97

asynchronous loading, 77

attribute, 46

await, 97

Babel, 72

configuration, 106

Beazley, David, 1

body, 7

of HTML page, 44

of HTTP request, 126

Boolean, 6

Bootstrap, 51

bundler, 74

cache, 125

call stack, 20

callback function, 19

camel case, 34

Cascading Style Sheets, 50

catch, 224

CC-0, 198

CC-BY, 199

CDN, 83

character encoding, 55

character string, 5

cheerio, 138

child class, 37

class

child, 37

extension, 37

in HTML, 50

in JavaScript, 34

inheritance, 37

parent, 37

client, 69

client-side page generation, 69

closure, 28

comma-separated values, 117

CommonJS module system, 12

component (in React), 72

condition, 7

connection manager, 213

console.log, 5

constant, 5

constructor, 35

Content Delivery Network, 83

CORS, 169

cross-origin resource sharing, 169

CSS, 50

Data-Forge, 141, 157

dataframe, 141

aggregation, 150

select by location, 148

select by value, 149

type conversion, 148

datatype

Boolean, 6

null, 6

undefined, 6

datatypes

integer (lack of), 5

number, 5

declarative, 79

deployment, 225

229

230 INDEX

destructuring, 65

destructuring assignment, 16

developer tools, 56, 71

DNS, 126

document, 43

Document Object Model, 57

DOM, 57

dotted notation, 5

driver, 215

ECMAScript, 12

element

ID, 51

root, 43

elements, 43

EMBL, 2

entry point, 212

equality

forms of, 8

ES6 module system, 12

escape, 207

escape sequence, 43

event handler, 103

event listener, 61

event loop, 87

event object, 103

exception, 224

Express, 125

extension, 37

external style sheet, 50

falsy, 8

fat arrow function, 11

fetch, 90, 114

fields, 213

fixture, 133

for loop, 6

function

anonymous, 24

classic, 10

default value, 11

fat arrow, 11

higher-order, 25

parameter, 10

return, 11

functional programming, 25

global installation, 3

globally, 3

GNU Public License, 198

head (of HTML page), 44

header (HTTP), 126

header row, 117

heading (in HTML), 46

heterogeneous, 8

higher-order function, 25

hostname, 126

HTML template, 69

HTTP, 125

header, 126

request, 125

response, 125

status code, 126

image (in HTML page), 49

immutable, 141

in-memory database, 215

inheritance, 37

inner loop, 7

innerHTML property, 57

instance, 35

instance method, 58

internal style sheet, 52

interpolation

string, 8

JSON, 10, 79, 117

JSX, 71

link

in HTML page, 48

internal, 51

list (in HTML page), 46

local installation, 3

local server, 74

local variable, 12

locally, 3

logging, 209

loop

for, 6

INDEX 231

while, 62

nested, 7

memory diagram, 19

method, 8, 35, 125

override, 36

method chaining, 145

minimization, 52

MIT license, 198

Mocha, 133

model, 107

module, 5

require, 13

exports, 13

imports, 13

module system

CommonJS, 12

ES6, 12

module variable, 161

Mozilla Developer Network, 14

mutation, 221

name collision, 20

NaN (Not a Number), 14, 122

neologism (horrible), 8

nested

arrays, 7

loops, 7

Node, 3

node (of tree), 57

Node Package Manager (npm), 3

NoSQL databases, 213

Not a Number, 14

npm, 3

object, 8

keys, 9

string representation, 10

values, 9

observer/observable, 41

onload attribute (of page), 60

outer loop, 7

overriding methods, 36

package manager, 3

package.json, 75

Pandas, 141

PapaParse, 119

parameter, 10

React, 73

Parcel, 74, 168

parent class, 37

parsing, 19

path

absolute, 49

relative, 49

polymorphism, 34, 36

port, 127

programming

declarative, 79

functional, 25

object-oriented, 33

promise, 87

async and await, 97

all, 94

error handling, 90

execution, 90

property, 8

prototype, 34, 205

pseudo-random numbers, 122

query parameter, 127

query selector, 56

race condition, 56

React, 69

props object, 73

component, 72

need for unique keys, 111

parameter, 73

read-evaluate-print loop, 3

records, 213

refactor, 134

regular expression, 22, 136, 207

relational databases, 213

relative path, 49

REPL, 3

responsive design, 53

return statement, 11

RGB, 54

232 INDEX

root directory, 49

root element, 43

RStudio, 3

RunKit, 3

running JavaScript

asynchronously, 77

from the command line, 5

in the browser, 56

scope (of variable), 12

seed, 119, 123

selector, 51

server, 69

server-side page generation, 69

signature, 213

Software Carpentry, 2

spread syntax, 121

SQL, 213

stateful, 38

stateless, 40

static method, 58

status code (HTTP), 126

string interpolation, 8

style sheet

external, 50

internal, 52

super, 37

supertest, 135

table, 213

table (in HTML page), 47

tags, 43

template (HTML), 69

test runner, 133

test suite, 133

this, 35

throw, 224

tidy data, 141

tidyverse, 141

transport, 209

tree, 43

node, 57

truthy, 8

typeof operator, 5

Unicode, 6

unit testing, 133

URL, 125

variable
defining, 6

local, 12

variable scope, 12

Vega-Lite, 79, 167

view, 107

Webpack, 74

while loop, 62

whitespace, 62

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Chapter 1:
Introduction
	1.1 Who You Are
	1.2 Who We Are
	1.3 Setting Up
	1.4 Contributing
	1.4.1 Acknowledgments

	1.5 Exercises

	Chapter 2: Basic Features
	2.1 Hello, World
	2.2 Basic Data Types
	2.3 Control Flow
	2.4 Formatting Strings
	2.5 Objects
	2.6 Functions
	2.7 Modules
	2.8 Exercises

	Chapter 3: Callbacks
	3.1 The Call Stack
	3.2 Functions of Functions
	3.3 Anonymous Functions
	3.4 Functional Programming
	3.5 Closures
	3.6 Exercises

	Chapter 4: Objects and Classes
	4.1 Doing It By Hand
	4.2 Classes
	4.3 Inheritance
	4.4 Exercises

	Chapter 5: HTML and CSS
	5.1 Formatting
	5.2 Text
	5.3 Pages
	5.4 Attributes
	5.5 Lists
	5.6 Tables
	5.7 Links
	5.8 Images
	5.9 Cascading Style Sheets
	5.10 Bootstrap
	5.11 Exercises

	Chapter 6: Manipulating Pages
	6.1 Counting Paragraphs
	6.2 Creating a Table of Contents
	6.3 Sortable Lists
	6.4 Bibliographic Citations
	6.5 A Real-time Clock
	6.6 Exercises

	Chapter 7: Dynamic Pages
	7.1 Hello, World
	7.2 JSX
	7.3 Creating Components
	7.4 Developing with Parcel
	7.5 Multiple Files
	7.6 Exercises

	Chapter 8: Visualizing Data
	8.1 Vega-Lite
	8.2 Local Installation
	8.3 Exercises

	Chapter 9: Promises
	9.1 The Execution Queue
	9.2 Promises
	9.3 Using Promises
	9.4 async and await
	9.5 Exercises

	Chapter 10: Interactive Sites
	10.1 But It Doesn’t Work
	10.2 Models and Views
	10.3 Fetching Data
	10.4 Exercises

	Chapter 11: Managing Data
	11.1 Data Formats
	11.2 Slicing Data
	11.3 Data Manager
	11.4 Exercises

	Chapter 12: Creating a Server
	12.1 HTTP
	12.2 Hello, Express
	12.3 Handling Multiple Paths
	12.4 Serving Files from Disk
	12.5 Content Types
	12.6 Exercises

	Chapter 13: Testing
	13.1 Introducing Mocha
	13.2 Refactoring
	13.3 Testing the Server
	13.4 Checking the HTML
	13.5 Exercises

	Chapter 14: Using Data-Forge
	14.1 Basic Operations
	14.2 Doing Calculations
	14.3 Subsets
	14.4 Aggregation
	14.5 In Real Life
	14.6 Exercises

	Chapter 15: Capstone Project
	15.1 Data Manager
	15.2 Server
	15.3 API
	15.4 The Display
	15.5 The Tables
	15.6 The Chart
	15.7 Running It
	15.8 Exercises

	Chapter 16: Finale
	Bibliography
	Appendix A: License
	Appendix B: Code of Conduct
	B.1 Our Standards
	B.2 Our Responsibilities
	B.3 Scope
	B.4 Enforcement
	B.5 Attribution

	Appendix C: Contributing
	Appendix D: Glossary
	Appendix E: Key Points
	Appendix F: Collaborating
	F.1 Licensing Software
	F.2 Licensing Data and Documentation
	F.3 Code of Conduct
	F.4 Governance

	Appendix G: Legacy JavaScript Issues
	G.1 Equality
	G.2 Iteration
	G.3 Prototypes

	Appendix H: Regular Expressions
	Appendix I: Logging
	Appendix J: Extensible Servers
	Appendix K: Using a Database
	K.1 Starting Point
	K.2 In-Memory Database
	K.3 Making It Testable
	K.4 Testing
	K.5 Updating the Database
	K.6 Exercises

	Appendix L: Deploying
	Index

